

AWS®	For	Developers	For	Dummies®

Published	by:	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030-5774,	www.wiley.com

Copyright	©	2017	by	John	Wiley	&	Sons,	Inc.,	Hoboken,	New	Jersey

Media	and	software	compilation	copyright	©	2017	by	John	Wiley	&	Sons,	Inc.	All	rights	reserved.

Published	simultaneously	in	Canada

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form
or	by	any	means,	electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as
permitted	under	Sections	107	or	108	of	the	1976	United	States	Copyright	Act,	without	the	prior	written
permission	of	the	Publisher.	Requests	to	the	Publisher	for	permission	should	be	addressed	to	the
Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-
6011,	fax	(201)	748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Trademarks:	Wiley,	For	Dummies,	the	Dummies	Man	logo,	Dummies.com,	Making	Everything	Easier,
and	related	trade	dress	are	trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and	may
not	be	used	without	written	permission.	AWS	is	a	registered	trademark	of	Amazon	Technologies,	Inc.
All	other	trademarks	are	the	property	of	their	respective	owners.	John	Wiley	&	Sons,	Inc.	is	not
associated	with	any	product	or	vendor	mentioned	in	this	book.

LIMIT	OF	LIABILITY/DISCLAIMER	OF	WARRANTY:	THE	PUBLISHER	AND	THE	AUTHOR
MAKE	NO	REPRESENTATIONS	OR	WARRANTIES	WITH	RESPECT	TO	THE	ACCURACY	OR
COMPLETENESS	OF	THE	CONTENTS	OF	THIS	WORK	AND	SPECIFICALLY	DISCLAIM	ALL
WARRANTIES,	INCLUDING	WITHOUT	LIMITATION	WARRANTIES	OF	FITNESS	FOR	A
PARTICULAR	PURPOSE.	NO	WARRANTY	MAY	BE	CREATED	OR	EXTENDED	BY	SALES	OR
PROMOTIONAL	MATERIALS.	THE	ADVICE	AND	STRATEGIES	CONTAINED	HEREIN	MAY
NOT	BE	SUITABLE	FOR	EVERY	SITUATION.	THIS	WORK	IS	SOLD	WITH	THE
UNDERSTANDING	THAT	THE	PUBLISHER	IS	NOT	ENGAGED	IN	RENDERING	LEGAL,
ACCOUNTING,	OR	OTHER	PROFESSIONAL	SERVICES.	IF	PROFESSIONAL	ASSISTANCE	IS
REQUIRED,	THE	SERVICES	OF	A	COMPETENT	PROFESSIONAL	PERSON	SHOULD	BE
SOUGHT.	NEITHER	THE	PUBLISHER	NOR	THE	AUTHOR	SHALL	BE	LIABLE	FOR
DAMAGES	ARISING	HEREFROM.	THE	FACT	THAT	AN	ORGANIZATION	OR	WEBSITE	IS
REFERRED	TO	IN	THIS	WORK	AS	A	CITATION	AND/OR	A	POTENTIAL	SOURCE	OF
FURTHER	INFORMATION	DOES	NOT	MEAN	THAT	THE	AUTHOR	OR	THE	PUBLISHER
ENDORSES	THE	INFORMATION	THE	ORGANIZATION	OR	WEBSITE	MAY	PROVIDE	OR
RECOMMENDATIONS	IT	MAY	MAKE.	FURTHER,	READERS	SHOULD	BE	AWARE	THAT
INTERNET	WEBSITES	LISTED	IN	THIS	WORK	MAY	HAVE	CHANGED	OR	DISAPPEARED
BETWEEN	WHEN	THIS	WORK	WAS	WRITTEN	AND	WHEN	IT	IS	READ.

For	general	information	on	our	other	products	and	services,	please	contact	our	Customer	Care
Department	within	the	U.S.	at	877-762-2974,	outside	the	U.S.	at	317-572-3993,	or	fax	317-572-4002.
For	technical	support,	please	visit	https://hub.wiley.com/community/support/dummies.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material
included	with	standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-
demand.	If	this	book	refers	to	media	such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you
purchased,	you	may	download	this	material	at	http://booksupport.wiley.com.	For	more

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com

information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2017946597

ISBN:	978-1-119-37184-7

ISBN	978-1-119-37189-2	(ebk);	ISBN	ePDF	978-1-119-37186-1	(ebk)

http://www.wiley.com

AWS®	For	Developers	For	Dummies®
To	view	this	book's	Cheat	Sheet,	simply	go	to	www.dummies.com	and
search	for	“AWS	For	Developers	For	Dummies	Cheat	Sheet”	in	the
Search	box.

Table	of	Contents
Cover
Introduction

About	This	Book

Foolish	Assumptions

Icons	Used	in	This	Book

Beyond	the	Book

Where	to	Go	from	Here

Part	1:	Discovering	the	AWS	Development	Environment
Chapter	1:	Starting	Your	AWS	Adventure

Defining	the	AWS	Cloud

Discovering	IaaS

Determining	Why	You	Should	Use	AWS

Considering	the	AWS-Supported	Platforms

Chapter	2:	Obtaining	Development	Access	to	Amazon	Web	Services
Discovering	the	Limits	of	Free	Services

Considering	the	Hardware	Requirements

Getting	Signed	Up

Testing	Your	Setup

Chapter	3:	Choosing	the	Right	Services
Getting	a	Quick	Overview	of	Free-Tier	Services

Matching	AWS	Services	to	Your	Application

Considering	AWS	Security	Issues

Part	2:	Starting	the	Development	Process
Chapter	4:	Considering	AWS	Communication	Strategies

Defining	the	Major	Communication	Standards

Understanding	How	REST	Works

Chapter	5:	Creating	a	Development	Environment
Choosing	a	Platform

Obtaining	and	Installing	Python

Working	with	the	Identity	and	Access	Management	Console

Installing	the	Command	Line	Interface	Software

http://www.dummies.com

Configuring	S3	Using	CLI

Configuring	S3	Using	Node.js

Configuring	S3	Using	a	Desktop	Application

Chapter	6:	Creating	a	Virtual	Server	Using	EC2
Getting	to	Know	the	Elastic	Compute	Cloud	(EC2)

Working	with	Elastic	Block	Store	(EBS)	Volumes

Discovering	Images	and	Instances

Part	3:	Performing	Basic	Development	Tasks
Chapter	7:	Understanding	AWS	Input/Output

Considering	the	Input/Output	Options

Working	with	JSON

Working	with	XML

Working	with	Amazon	API	Gateway

Chapter	8:	Developing	Web	Apps	Using	Elastic	Beanstalk
Considering	Elastic	Beanstalk	(EB)	Features

Deploying	an	EB	Application

Updating	an	EB	Application

Removing	Unneeded	Applications

Monitoring	Your	Application	Using	Amazon	CloudWatch

Chapter	9:	Developing	Batch	Processes	and	Scripts
Considering	the	Batch-Processing	and	Script	Options

Performing	Batch	Processing	Locally

Developing	Scripts

Using	Scripts	Locally

Interacting	with	aws-shell

Chapter	10:	Responding	to	Events	with	Lambda
Considering	the	Lambda	Features

Starting	the	Lambda	Console

Creating	a	Basic	Lambda	Application

Interacting	with	Simple	Queue	Services	(SQS)

Part	4:	Interacting	with	Databases
Chapter	11:	Getting	Basic	DBMS	Using	RDS

Considering	the	Relational	Database	Service	(RDS)	Features

Managing	RDS

Creating	a	Database	Server

Adding	Support	to	Applications

Configuring	Load	Balancing	and	Scaling

Chapter	12:	Programming	Techniques	for	AWS	and	MySQL
Interacting	with	RDS

Working	with	MySQL	Code

Working	with	the	MySQL/RDS	Tables

Performing	Data	Uploads

Performing	Data	Downloads

Chapter	13:	Gaining	NoSQL	Access	Using	DynamoDB
Considering	the	DynamoDB	Features

Downloading	a	Local	Copy	of	DynamoDB

Creating	a	Basic	DynamoDB	Setup

Developing	a	Basic	Database

Performing	Queries

Part	5:	The	Part	of	Tens
Chapter	14:	Ten	Ways	to	Create	AWS	Applications	Quickly

Working	at	the	Console

Using	Example	Source	Code

Combining	Trial-and-Error	Techniques

Watching	the	Videos

Attending	the	Webinars

Discovering	Others	Efforts

Depending	on	Peer	Support

Working	with	Blogs

Using	Alternative	Sources

Going	Back	to	Tutorials

Chapter	15:	Ten	AWS	Tools	Every	Developer	Needs
Obtaining	Additional	Amazon	Offerings

Partnering	with	a	Third	Party

Developing	New	Knowledge

Using	Bitnami	Developer	Tools-

Relying	on	Device	Emulators

About	the	Author
Connect	with	Dummies
End	User	License	Agreement

Introduction
With	the	availability	of	cloud-based	resources,	developers	today	have	an	unprecedented	opportunity	to
create	amazing	applications	that	previously	weren’t	possible.	Amazon	Web	Services	(AWS)	enables
developers	to	interact	with	the	entire	world,	even	when	their	application	supports	the	smallest	of
organizations.	The	access	to	services	in	the	cloud	is	amazing	enough,	but	the	access	to	data	and	other
resources	is	now	at	mind-boggling	levels.	Unfortunately,	many	developers	are	indeed	overawed	by	the
sheer	size	and	scope	of	cloud-based	development,	which	is	why	you	need	AWS	For	Developers	For
Dummies.

This	book	is	about	making	things	simple.	You	don’t	have	to	try	to	understand	the	entire	cloud	or	even
just	AWS	in	a	single	sitting;	instead,	AWS	For	Developers	For	Dummies	breaks	down	all	the	concepts
into	smaller	chunks.	If	you	want	to	create	imaginative	applications,	this	books	helps	you	do	so	without
spending	frustrating	hours	learning	the	arcane	AWS	API	beforehand.	Life	is	short.	With	this	book,	you
can	create	an	application	in	just	a	few	hours	and	become	productive	more	quickly,	freeing	you	from	the
drudgery	of	learning	quite	a	lot	to	do	only	a	little.

About	This	Book
The	purpose	of	AWS	For	Developers	For	Dummies	is	to	help	you	get	up	and	running	quickly.	You
build	a	test	environment	and	install	tools	that	let	you	experiment	with	many	of	the	major	services
without	a	lot	of	effort.	The	focus	of	this	book	is	to	get	you	started	doing	something	by	using	just	a	few
of	the	services.	One	of	the	hardest	parts	of	working	with	AWS	is	that	so	many	services	are	available
(more	than	100	of	them)	that	a	developer	might	go	nuts	just	trying	to	figure	out	where	to	begin.	This
book	relieves	you	of	that	problem.

Most	of	the	book	examples	focus	on	three	kinds	of	AWS	interaction:	through	the	console,	through	the
Command	Line	Interface	(CLI),	and	programmatically.	In	most	cases,	these	are	the	three	ways
developers	begin	working	with	AWS.	The	console	lets	you	see	how	AWS	works	from	an
administrative	level.	Using	CLI	helps	you	understand	the	AWS	functionality	at	a	deeper	level,	plus	you
can	use	it	to	create	scripts.	Finally,	this	book	uses	Python	Notebooks	to	make	experimentation	very
easy.	You	don’t	have	to	write	complete	applications	to	see	something	happen;	just	a	few	lines	of	code
will	do.	So,	in	contrast	to	other	programming	projects,	in	which	you	spent	hours	writing	code	just	to
see	the	project	die	because	of	the	smallest	typo,	this	book	helps	you	attain	something	significant
without	much	typing	at	all.

To	help	you	absorb	the	concepts,	this	book	uses	the	following	conventions:

Text	that	you’re	meant	to	type	just	as	it	appears	in	the	book	is	in	bold.	The	exception	is	when
you’re	working	through	a	step	list:	Because	each	step	is	bold,	the	text	to	type	is	not	bold.
Words	for	you	to	type	that	are	also	in	italics	are	meant	as	placeholders;	you	need	to	replace	them
with	something	that	works	for	you.	For	example,	if	you	see	“Type	Your	Name	and	press	Enter,”
you	need	to	replace	Your	Name	with	your	actual	name.
I	also	use	italics	for	terms	I	define.	This	means	that	you	don’t	have	to	rely	on	other	sources	to
provide	the	definitions	you	need.

Web	addresses	and	programming	code	appear	in	monofont.	If	you’re	reading	a	digital	version	of
this	book	on	a	device	connected	to	the	Internet,	you	can	click	the	live	link	to	visit	a	website,	like
this:	http://www.dummies.com.

When	you	need	to	click	command	sequences,	you	see	them	separated	by	a	special	arrow,	like	this:
File     New	File,	which	tells	you	to	click	File	and	then	New	File.

Foolish	Assumptions
You	might	have	a	hard	time	believing	that	I’ve	assumed	anything	about	you	—	after	all,	I	haven’t	even
met	you	yet!	Although	most	assumptions	are	indeed	foolish,	I	made	certain	assumptions	to	provide	a
starting	point	for	the	book.

The	first	assumption	is	that	you’re	familiar	with	the	platform	you	want	to	use,	because	the	book	doesn’t
offer	any	guidance	in	this	regard.	This	book	doesn’t	discuss	any	platform-specific	issues.	You	really
do	need	to	know	how	to	install	applications,	use	applications,	and	generally	work	with	your	chosen
platform	before	you	begin	working	with	this	book.

You	also	need	to	be	familiar	with	your	browser	and	understand	how	to	interact	with	browser-based
applications.	Sprinkled	throughout	are	numerous	references	to	online	material	that	can	enhance	your
learning	experience.	In	addition,	most	of	the	tasks	you	perform	with	AWS	require	that	you	work	in	your
browser.

This	book	is	largely	platform	independent.	However,	none	of	the	procedures	are	tested	using	small
mobile	devices,	such	as	a	smartphone	(and	some	are	almost	guaranteed	not	to	work	on	a	small	device).
Differences	in	appearance	do	emerge	when	using	a	smaller	device;	a	control	that	appears	as	a	button
on	a	larger	device	may	appear	as	a	link	or	other	control	on	a	smaller	device.	You	need	access	to	the
sort	of	setup	that	a	developer	will	use	to	create	and	configure	online	applications,	which	means	a
larger	tablet,	notebook,	or,	better	yet,	a	full	desktop	system.	The	various	people	who	worked	on	this
book	used	desktop	systems	running	the	Windows,	Linux,	and	Mac	OS	X	platforms	and	using	a	number
of	common	browsers.

Because	this	is	a	book	about	application	development,	you	also	need	to	have	some	understanding	of
the	development	process.	Knowledge	of	Python	would	be	nice,	but	it’s	not	absolutely	necessary
because	of	the	way	the	examples	work.	You	may	still	need	to	spend	some	time	with	a	Python	tutorial	to
understand	everything	that	the	examples	provide.	In	addition,	you	need	to	know	how	to	work	at	the
command	prompt	or	terminal	window.	Many	of	the	examples	require	that	you	manually	type	commands
rather	than	work	with	a	GUI.	In	fact,	a	few	of	the	examples	simply	won’t	work	with	a	GUI	because	the
options	are	unavailable.	(These	examples	are	clearly	marked	in	the	book.)

Icons	Used	in	This	Book
As	you	read	this	book,	you	encounter	icons	in	the	margins	that	indicate	material	of	special	interest	(or
not,	as	the	case	may	be!).	Here’s	what	the	icons	mean:

http://www.dummies.com/

	Tips	are	nice	because	they	help	you	save	time	or	perform	some	task	without	a	lot	of	extra
work.	The	tips	in	this	book	are	time-saving	techniques	or	pointers	to	resources	that	you	should	try
so	that	you	can	get	the	maximum	benefit	when	performing	AWS-related	tasks.

	I	don’t	want	to	sound	like	an	angry	parent	or	some	kind	of	maniac,	but	you	should	avoid	doing
anything	that’s	marked	with	a	Warning	icon.	Otherwise,	you	might	find	that	your	configuration
fails	to	work	as	expected,	you	get	incorrect	results	from	seemingly	bulletproof	processes,	or	(in
the	worst-case	scenario)	you	lose	data.

	Whenever	you	see	this	icon,	think	advanced	tip	or	technique.	You	might	find	these	tidbits	of
useful	information	just	too	boring	for	words,	or	they	could	contain	the	solution	you	need	to	get	an
AWS	service	running.	Skip	these	bits	of	information	whenever	you	like.

	If	you	don’t	get	anything	else	out	of	a	particular	chapter	or	section,	remember	the	material
marked	by	this	icon.	This	text	usually	contains	an	essential	process	or	a	bit	of	information	that	you
must	know	to	work	with	AWS,	or	to	perform	cloud-based-setup	tasks	successfully.

Beyond	the	Book
This	book	isn’t	the	end	of	your	AWS	learning	experience	—	it’s	really	just	the	beginning.	I	provide
online	content	to	make	this	book	more	flexible	and	better	able	to	meet	your	needs.	That	way,	as	I
receive	email	from	you,	I	can	address	questions	and	tell	you	how	updates	to	AWS	or	its	associated
add-ons	affect	book	content.	In	fact,	you	gain	access	to	these	cool	additions:

Cheat	sheet:	You	remember	using	crib	notes	in	school	to	make	a	better	mark	on	a	test,	don’t	you?
You	do?	Well,	a	cheat	sheet	is	sort	of	like	that.	It	provides	you	with	some	special	notes	about	tasks
that	you	can	do	with	AWS	that	not	every	other	person	knows.	To	find	the	cheat	sheet	for	this	book,
go	to	www.dummies.com	and	search	for	AWS	For	Developers	For	Dummies	Cheat	Sheet.	On	the
page	that	appears,	scroll	down	the	page	until	your	cursor	turns	the	AWS	For	Developers	For
Dummies	Cheat	Sheet	link	blue;	then	click	it.	The	cheat	sheet	contains	really	neat	information	such
as	figuring	out	which	service	you	want	to	use.
Updates:	Sometimes	changes	happen.	For	example,	I	might	not	have	seen	an	upcoming	change
when	I	looked	into	my	crystal	ball	during	the	writing	of	this	book.	In	the	past,	this	possibility
simply	meant	that	the	book	became	outdated	and	less	useful,	but	you	can	now	find	updates	to	the
book	at	www.dummies.com.
In	addition	to	these	updates,	check	out	the	blog	posts	with	answers	to	reader	questions	and

http://www.dummies.com
http://www.dummies.com

demonstrations	of	useful	book-related	techniques	at	http://blog.johnmuellerbooks.com/.

Companion	files:	Hey!	Who	really	wants	to	type	all	the	code	in	the	book	manually?	Most	readers
prefer	to	spend	their	time	actually	working	with	Python,	performing	tasks	using	AWS,	and	seeing
the	interesting	things	they	can	do,	rather	than	typing.	Fortunately	for	you,	the	examples	used	in	the
book	are	available	for	download,	so	all	you	need	to	do	is	read	the	book	to	learn	AWS	usage
techniques.	To	get	the	source	code,	go	to	www.dummies.com	and	search	AWS	For	Developers	For
Dummies.	Scroll	down	to	the	graphic	of	the	book	cover	and	click	it.	Click	the	More	About	This
Book	box	that	appears	and	then	the	Download	tab	to	find	the	files.

Where	to	Go	from	Here
It’s	time	to	start	your	AWS	adventure!	If	you’re	completely	new	to	AWS,	you	should	start	with	Chapter
1	and	progress	through	the	book	at	a	pace	that	allows	you	to	absorb	as	much	of	the	material	as
possible.	Chapter	2	is	especially	important	because	it	helps	you	understand	what	Amazon	means	by
free-tier	services.	You	should	also	read	Chapter	3,	even	if	you	have	experience	with	AWS,	because	it
provides	information	about	the	services	discussed	in	the	book.

Readers	who	have	some	exposure	to	AWS	must	still	work	through	the	latter	half	of	Chapter	2	because
it	shows	how	to	obtain	your	developer	key.	After	that,	you	can	move	directly	to	Chapter	4.	You	can
always	go	back	to	earlier	chapters	as	necessary	when	you	have	questions.	However,	you	do	need	to
understand	how	each	technique	works	before	moving	to	the	next	one.	Every	technique	and	procedure
has	important	lessons	for	you,	and	you	can	miss	vital	content	if	you	start	skipping	too	much
information.

http://blog.johnmuellerbooks.com/
http://www.dummies.com/

Part	1
Discovering	the	AWS	Development

Environment

IN	THIS	PART	…
Get	started	with	Amazon	Web	Services	(AWS).

Create	a	good	AWS	development	environment.

Obtain	your	developer	key.

Understand	the	AWS	free	tier.

Consider	the	security	issues.

Chapter	1
Starting	Your	AWS	Adventure

IN	THIS	CHAPTER
	Exploring	the	AWS	cloud
	Considering	Infrastructure	as	a	Service	(IaaS)
	Defining	when,	why,	and	how	to	use	AWS
	Ensuring	you	have	a	supported	platform

There	was	a	time	when	business	development	meant	creating	software	for	a	single	machine	or	for	a
workgroup.	The	client-server	architecture,	with	its	emphasis	on	both	local	and	centralized	servers,
came	next.	Developers	eventually	started	creating	applications	for	the	Internet	as	well,	enabling
people	to	do	things	like	work	from	home	without	losing	contact	with	the	organization’s	database.
Browser-based	applications	actually	appear	on	most	desktops	today,	and	you	might	spend	much	of
your	nondevelopment	time	using	one.

As	development	has	moved	onward	and	outward,	the	tools,	techniques,	and	processes	for	development
have	changed	as	well.	Today	you	deal	with	the	cloud,	where	the	server	that	holds	your	application
doesn’t	even	reside	on	the	premises.	In	many	respects,	everyone	is	a	remote	user	today.	Of	course,
organizations	have	a	huge	investment	in	existing	hardware	and	software,	so	you’re	actually	more	likely
to	find	yourself	working	in	a	hybrid	environment	with	one	foot	on	local	resources	and	the	other	on
someone	else’s	turf.	Amazon	Web	Services	(AWS)	provides	you	with	a	complete	development
environment,	but	for	many	developers,	the	changes	that	using	AWS	require	are	significant	and
awkward.	This	chapter	helps	you	better	understand	what	to	expect	from	AWS	and	to	feel	just	a	little
less	awkward	about	the	coming	changes.

You	may	also	find	yourself	drowning	in	a	sea	of	new	abbreviations	and	acronyms.	Of	course,	you	can
act	like	you	know	what	all	these	terms	mean,	but	they’re	actually	important	terms,	and	knowing	what
they	mean	gives	you	an	edge	over	everyone	else.	This	chapter	also	helps	you	understand	terms	like
Infrastructure	as	a	Service	(IaaS)	and	discover	just	what	this	new	term	means	to	you	as	a	developer.	If
you	already	work	on	the	Internet,	you	could	possibly	skip	this	part	of	the	chapter,	but	if	you’ve	spent
your	career	working	with	desktop	applications	or	a	local	intranet,	you	definitely	want	to	find	out	more.

Developers	often	find	that	the	most	frustrating	part	of	creating	an	application	is	having	the	right	tool.
Development	is	more	than	knowing	the	right	procedures	and	the	right	function	calls	—	it’s	a	matter	of
knowing	the	most	efficient	manner	in	which	to	use	them	and	determining	when	the	tools	already	in	use
won’t	do	the	job.	This	chapter	closes	with	some	essential	information	about	the	platforms	that	AWS
supports.	Reading	this	material	will	help	you	avoid	some	serious	trouble	later	because	you	can	avoid
the	most	serious	platform	issues	at	the	outset.

Defining	the	AWS	Cloud

As	a	developer,	you	need	to	meet	end-user	demands	with	the	least	amount	of	effort	and	in	the	quickest
time.	Amazon	Web	Services	(AWS)	is	a	huge	array	of	services	that	affects	consumers,	small	to
medium-sized	businesses	(SMB),	and	enterprises.	Using	AWS,	you	can	do	everything	from	creating
applications	for	remote	access	to	organization	data	to	creating	a	full-fledged	IT	department	in	the
cloud.	The	installed	base	is	immense.	You	can	find	case	studies	of	companies	like	Adobe	and	Netflix
that	use	AWS	at	https://aws.amazon.com/solutions/case-studies/.	(The	page	also	includes	a
link	to	create	an	account,	a	topic	discussed	in	Chapter	2.)	AWS	use	isn’t	just	for	private	companies,
either	—	even	the	government	makes	use	of	its	services.

The	technologies	that	make	all	these	services	possible	are	simple	in	conception.	Think	of	a	pair	of	tin
cans	attached	to	each	other	by	a	string.	Amazon	holds	one	tin	can	and	you	hold	the	other.	By	talking
into	one	tin	can,	you	can	hear	what	is	said	at	the	other	end.	The	implementation,	however,	relies	on
details	that	make	communication	harder	than	you	might	initially	think.	The	following	sections	give	you
an	overview	on	how	the	AWS	cloud	works.

Understanding	service-driven	application	architectures
Service-driven	application	architectures,	sometimes	known	as	Service-Oriented	Architectures	(SOA),
come	in	many	forms.	No	matter	how	you	view	them,	service-driven	application	architectures	are
extensions	of	the	client-server	technologies	that	you	may	still	use	when	creating	localized	applications,
in	that	a	client	makes	a	request	that	a	server	fulfills	by	performing	an	action	or	sending	a	response.

The	request/response	implementation	details	have	changed	significantly	over	the	years,	however,
making	modern	applications	far	more	reliable,	flexible,	and	less	reliant	on	a	specific	network
configuration.	The	request	and	response	process	can	involve	multiple	levels	of	granularity,	with	the
term	microservice	applied	to	the	smallest	request	and	response	pairs.	Developers	often	refer	to	an
application	that	relies	on	a	service-driven	application	architecture	as	a	composite	application
because	it	exists	as	multiple	pieces	glued	together	to	form	a	whole.	Service-driven	application
architectures	follow	many	specific	patterns,	but	in	general,	they	use	the	following	sequence	to	perform
communication	tasks:

1.	 Create	a	request	on	the	client	using	whatever	message	technology	the	server	requires.
2.	 Package	the	request,	adding	security	or	other	information	as	needed.
3.	 Send	the	request	using	a	protocol,	such	as	Simple	Object	Access	Protocol	(SOAP),	or	an

architecture,	such	as	REpresentational	State	Transfer	(REST).

	No	matter	what	programming	language	you	use,	you	need	to	know	how	to	communicate
with	web	services	using	your	programming	language	of	choice.	The	“Considering	the	AWS-
Supported	Platforms”	section	of	this	chapter	helps	you	make	a	good	decision	about	a	language
choice.	You	can	discover	how	SOAP	works	at	http://www.w3schools.com/xml/xml:soap.asp
and	how	REST	works	at	http://www.tutorialspoint.com/restful/.	Knowledge	of	both	is
required	when	working	with	AWS	as	a	developer.

4.	 Process	the	request	on	the	server.
5.	 Perform	an	action	or	return	data	as	required	by	the	request.

https://aws.amazon.com/solutions/case-studies/
http://www.w3schools.com/xml/xml:soap.asp
http://www.tutorialspoint.com/restful/

6.	 When	working	with	data,	process	the	response	on	the	client	and	present	the	results	to	the	user	(or
other	recipient).

	AWS	provides	a	service-driven	application	architecture	in	which	you	choose	a	specific
service,	such	as	Simple	Storage	Service	(S3),	to	perform	specific	tasks,	such	as	to	store
application	data	in	a	remote	location.	In	many	cases,	you	must	perform	setup	steps	in	addition	to
simply	interacting	with	the	service.	For	example,	if	you	look	at	the	ten-minute	tutorial	at
http://aws.amazon.com/getting-started/tutorials/backup-files-to-amazon-s3/,
you	find	that	you	must	first	create	a	bucket	to	store	the	files	you	want	to	upload	to	Amazon.	This
additional	step	makes	sense	because	you	have	to	establish	a	location	from	which	to	retrieve	the
files	later,	and	you	don’t	want	your	files	mixed	in	with	files	from	other	people.

Even	though	many	of	the	processes	you	perform	with	AWS	require	using	an	app	(so	that	you	have	a
user	interface	rather	than	code	to	work	with),	the	underlying	process	is	the	same.	The	code	provided	in
the	app	makes	requests	and	then	waits	for	a	response.	In	some	cases,	the	app	must	determine	the
success	or	failure	of	an	action	on	the	server.	Rather	than	reinvent	the	wheel,	a	smart	developer	will
use	as	many	of	these	apps	as	possible	to	perform	general	configuration	tasks.	Using	the	AWS	apps
places	the	burden	of	updating	the	code	on	Amazon	so	that	you	can	focus	on	custom	tasks	related	to	your
organization.

INTERACTIVITY	IN	THE	DEVELOPMENT	ENVIRONMENT
Local	applications	require	a	certain	level	of	interactivity	between	groups.	A	database	administrator	(DBA)	may	perform
database	setups	before	you	can	write	code	to	interact	with	the	data	in	that	database.	However,	after	the	required	individuals
perform	basic	local	setups,	you	may	not	interact	with	them	as	much	as	you	do	while	creating	your	application	code.	Usually
there	is	a	flurry	of	activity	during	testing	and	again	during	deployment,	but	developers	are	often	left	alone	to	do	their	work
otherwise	because	administrators	in	other	areas	give	them	the	control	needed	to	perform	tasks.

Things	work	differently	in	the	cloud.	For	example,	you	might	find	yourself	performing	some	tasks	normally	associated	with
other	disciplines,	such	as	service	configuration.	This	book	helps	you	through	the	configuration	tasks	that	developers	normally
do	as	part	of	working	with	AWS.	In	addition,	you	find	tips	about	when	you	need	to	work	with	others	to	finish	tasks.	The	level	of
interactivity	between	disciplines	is	much	higher	in	the	cloud	because	you	have	less	control	over	the	environment	(you’re
using	someone	else’s	hardware	and	underlying	software,	after	all).	In	addition,	the	cloud	environment	can	become	more
complex	than	the	test	server	setup	that	you	may	normally	rely	on	for	localized	development.

Understanding	process-	and	function-driven	work	flows
In	creating	apps	to	help	manage	underlying	services,	AWS	also	defines	workflows.	A	workflow	is	an
organized	method	of	accomplishing	tasks.	For	example,	when	you	want	to	save	a	file	to	AWS	using	S3,
you	must	first	create	a	bucket	to	hold	the	file.	Only	after	you	create	a	bucket	can	you	save	a	file	to
AWS.	In	addition,	you	can’t	retrieve	a	file	from	the	bucket	until	you	first	save	a	file	there,	which	makes
sense	because	you	can’t	grab	a	file	out	of	thin	air.	In	short,	a	workflow	defines	a	procedure	for
working	with	software,	and	the	concept	has	been	around	for	a	long	time.	(The	first	workflows
appeared	in	the	mid-1970s	with	simple	office	automation	prototypes	at	Xerox	Parc	and	the	University
of	Pennsylvania’s	Wharton	School	of	Business.)

Workflows	can	consist	of	additional	workflows.	In	addition,	workflows	manage	the	interaction

http://aws.amazon.com/getting-started/tutorials/backup-files-to-amazon-s3/

between	users	and	underlying	services.	A	process	is	the	aggregation	of	services	managed	by
workflows	into	a	cohesive	whole.	The	workflows	may	perform	generic	tasks,	but	processes	tend	to	be
specific	and	help	users	accomplish	particular	goals.	A	process-driven	workflow	is	proactive	and
attempts	to	circumvent	potential	problems	by

Spotting	failure	patterns	and	acting	on	them
Looking	for	trends	that	tend	to	lead	to	failures
Locating	and	extinguishing	potential	threats

	In	looking	through	the	tutorials	at	http://aws.amazon.com/getting-
started/tutorials/,	you	find	that	they	all	involve	using	some	type	of	user	interface.	The	user
interface	provides	the	workflow	used	to	manage	the	underlying	services.	Each	major	tutorial	step
is	a	workflow	that	performs	a	specific	task,	such	as	creating	a	bucket.	When	you	combine	these
individual	workflows	into	an	aggregate,	the	process	can	help	a	user	perform	tasks	such	as	moving
files	between	the	cloud	and	the	user’s	system.	Creating	a	cloud	file	system	is	an	example	of	a
process-driven	workflow:	The	workflow	exists	to	make	the	process	viable.	Workflows	can
become	quite	complex	in	large-scale	operations,	but	viewing	them	helps	you	understand	AWS
better.	You	can	find	a	more	detailed	discussion	of	workflows	and	processes	at
https://msdn.microsoft.com/library/bb833024.aspx.

A	function	is	the	reactive	use	of	services	managed	by	workflows	to	address	specific	problems	in	real
time.	Even	though	it	would	be	nice	if	process-driven	workflows	worked	all	the	time,	the	reality	is	that
even	with	99.999	percent	reliability,	the	process	will	fail	at	some	point,	and	a	function-driven
workflow	must	be	in	place	to	address	that	failure.	Although	process-driven	workflows	focus	on
flexible	completion	of	tasks,	function-driven	workflows	focus	on	procedurally	attenuating	the	effect	of
a	failure.	In	short,	function-driven	workflows	address	needs.	The	AWS	services	and	workflows	also
deal	with	this	issue	through	the	user	interface,	such	as	by	manually	restoring	a	backup	to	mitigate	a
system	failure.

	As	a	developer,	you	find	yourself	involved	in	a	number	of	tasks	that	may	appear	at	first	to	fall
outside	the	realm	of	development.	Development	in	the	cloud	isn’t	quite	the	same	as	development
at	the	desktop	or	development	of	applications	using	a	browser	strategy.	When	working	through
development	tasks	with	AWS,	you	find	yourself	performing	these	kinds	of	tasks	in	order	to
implement	workflows:

Configuring	the	native	functionality	of	AWS	using	wizards,	AWS-driven	scripts,	or	direct	API
calls	through	code
Modifying	AWS-driven	scripts	as	needed	to	accomplish	specific	goals	in	the	least	amount	of	time
possible
Defining	new	configuration	scenarios	to	meet	workflow	requirements	by	modifying	underlying

http://aws.amazon.com/getting-started/tutorials/
https://msdn.microsoft.com/library/bb833024.aspx

AWS	configuration	files,	scripts,	and	code
Using	AWS-supplied	tools,	such	as	lambda	functions	(see	https://aws.amazon.com/lambda/),
to	perform	tasks	without	resorting	to	hard	coding
Developing	applications	that	rely	on	API	calls	to	perform	tasks

Discovering	IaaS
Even	though	this	book	frequently	refers	to	virtual	environments	and	services	that	you	can’t	physically
see,	these	elements	all	exist	as	part	of	a	real	computer	environment	that	Amazon	hosts	on	your	behalf.
You	need	to	understand	how	these	elements	work	to	some	extent	because	they	have	a	physical	presence
and	impact	on	your	personal	or	business	needs.	Three	technologies	enable	anyone	to	create	a	virtual
computer	center	using	AWS:

Infrastructure	as	a	Service	(IaaS):	A	form	of	cloud	computing	that	provides	virtualized
computing	resources.	You	essentially	use	IaaS	to	replace	physical	resources,	such	as	servers,	with
virtual	resources	hosted	and	managed	by	Amazon.
Software	as	a	Service	(SaaS):	A	software	distribution	service	that	lets	you	use	applications
without	actually	having	the	applications	installed	locally.	Another	term	used	to	describe	this
service	is	software	on	demand.	The	host,	Amazon,	maintains	the	software,	provides	the	required
licenses,	and	does	all	the	other	work	needed	to	make	the	software	available.
Platform	as	a	Service	(PaaS):	A	platform	provides	a	complete	solution	for	running	software	in
an	integrated	manner	on	a	particular	piece	of	hardware.	For	example,	Windows	is	a	particular	kind
of	platform.	The	virtual	platform	provided	by	PaaS	allows	a	customer	to	develop,	run,	and	manage
applications	of	all	sorts.

The	following	sections	provide	an	extended	discussion	of	these	three	technologies	and	help	you
understand	how	they	interact	with	each	other.	The	point	of	these	sections	is	that	each	element	performs
a	different	task,	yet	you	need	all	three	to	create	a	complete	solution.

Defining	IaaS
The	simplest	way	to	view	IaaS	is	as	a	means	of	providing	access	to	virtualized	computer	resources
over	an	Internet	connection.	IaaS	acts	as	one	of	three	methods	of	sharing	resources	over	the	Internet,
alongside	SaaS	and	PaaS.	AWS	supports	IaaS	by	providing	access	to	virtualized	hardware,	software,
servers,	storage,	and	other	infrastructure	components.	In	short,	you	can	use	IaaS	to	replace	every
physical	element	in	your	computing	setup	except	those	required	to	establish	and	maintain	Internet
connectivity	and	those	required	to	provide	nonvirtualized	services	(such	as	printing).	The	advantages
of	IaaS	are	many,	but	here	are	the	ones	that	most	people	consider	essential:

The	host	handles	tasks	such	as	system	maintenance,	backup,	and	resiliency	planning.
A	client	can	gain	immediate	access	to	additional	resources	when	needed	and	then	doesn’t	need	to
worry	about	getting	rid	of	them	when	the	need	has	ended.
Detailed	administrative	tasks	are	handled	by	the	host,	but	the	client	can	manage	overall
administrative	tasks,	such	as	deciding	how	much	capacity	to	use	for	a	particular	task.

https://aws.amazon.com/lambda/

Users	have	access	to	desktop	virtualization,	which	means	that	their	desktop	appears	on	whatever
device	they	happen	to	use	at	a	given	moment.
The	use	of	policy-based	services	ensures	that	users	must	still	adhere	to	company	requirements
when	using	computer	resources.
All	required	updates	(software	and	hardware)	occur	automatically	and	without	any	interaction
required	by	the	client.

	Keep	in	mind	that	there	is	no	free	lunch.	AWS	and	other	IaaS	providers	are	interested	in
making	a	profit.	They	do	so	by	investing	in	huge	quantities	of	hardware,	software,	and	management
personnel	to	oversee	it	all.	The	benefits	of	scale	help	create	profit,	and	many	businesses	simply
can’t	create	the	setups	they	require	for	less	money.	However,	you	must	consider	the	definite
disadvantages	of	IaaS	as	well:
Billing	can	become	complex	because	some	services	are	billed	at	different	rates	and	within
different	time	frames.	In	addition,	billing	can	include	resource	usage.	The	client	must	ensure	that
the	amount	on	the	bill	actually	matches	real-world	usage;	paying	too	much	for	services	that	the
client	didn’t	actually	use	can	easily	happen.
Systems-management	monitoring	becomes	more	difficult.	The	client	loses	control	over	the	precise
manner	in	which	activities	occur.
A	lag	often	occurs	between	when	a	change	in	service	is	needed	and	when	the	host	provides	it,	so
the	client	can	find	that	even	though	services	are	more	flexible,	they	aren’t	as	responsive.
Host	downtime	can	affect	a	large	group	of	people	and	prove	difficult	to	fix,	which	means	that	a
particular	client	may	experience	downtime	at	the	worst	possible	time	without	any	means	to	resolve
it.
Building	and	testing	custom	applications	can	become	more	difficult.	Many	experts	recommend
using	in-house	equipment	for	application-development	needs	to	ensure	that	the	environment	is	both
protected	and	responsive.

	IaaS	service	contracts	vary	a	great	deal	between	vendors.	Even	though	this	book	focuses	on
AWS,	you	need	to	consider	other	offerings,	including	Windows	Azure,	Google	Compute	Engine,
Rackspace	Open	Cloud,	and	IBM	SmartCloud	Enterprise.	In	some	cases,	you	might	actually	find
it	useful	to	obtain	services	from	multiple	hosts	to	obtain	the	best	service	for	a	particular	need.

Comparing	IaaS	to	SaaS
SaaS	is	all	about	cloud-based	applications.	Products	like	online	email	and	office	suites	are	examples
of	cloud-based	applications.	A	client	typically	accesses	the	application	using	a	local	application,	such
as	a	browser.	The	browser	runs	on	local	hardware,	but	the	application	runs	on	the	host	hardware.
What	a	client	sees	is	the	application	running	in	the	browser	as	if	it	is	working	locally.	In	most	cases,
the	application	runs	within	a	browser	without	any	alteration	to	the	local	system.	However,	some
applications	do	require	the	addition	of	plug-ins.

The	difference	between	IaaS	and	SaaS	is	the	level	of	service.	When	working	with	IaaS,	a	client
typically	requires	detailed	support	that	spans	entire	solutions.	A	SaaS	solution	may	include	only	the
application.	However,	it	can	also	include	the	following:

Application	runtimes
Data	access
Middleware
Operating	system	support
Virtualization
Server	access
Data	storage
Networking

	SaaS	typically	keeps	the	host	completely	in	control	and	doesn’t	offer	any	sort	of	monitoring.
Even	though	the	host	keeps	the	application	updated	and	ensures	data	security,	the	client	company
administrators	typically	can’t	access	SaaS	solutions	in	any	meaningful	way.	(SaaS	offers
application	usage,	but	not	necessarily	application	configuration,	and	is	therefore	not	as	flexible	as
other	alternatives.)	In	addition,	the	client	company	typically	accepts	the	application	as	is,	without
any	modifications	or	customizations.	Using	client-developed	applications	is	out	of	the	question	in
this	scenario.

Comparing	IaaS	to	PaaS
PaaS	is	more	of	a	development	solution	than	a	production	environment	solution.	A	development	team
typically	uses	PaaS	to	create	custom	solutions	or	modify	existing	solutions.	The	development	staff	has
full	control	over	the	application	and	can	perform	all	development-related	tasks,	such	as	debugging	and
testing.	As	with	the	SaaS	solution,	the	host	normally	maintains	control	over

Middleware
Operating	system	support
Virtualization
Server	access
Data	storage
Networking

In	this	case,	however,	the	development	staff	can	access	the	middleware	to	enhance	application
development	without	reinventing	the	wheel.	Writing	application	code	to	make	the	application	cloud-
ready	isn’t	necessary	because	the	middleware	already	contains	these	features.	The	development	team
gains	access	to	cloud-based	application	features	that	include	the	following:

Scalability
High	availability
Multitenancy
SaaS	enablement

	Administrators	can	also	perform	monitoring	and	management	tasks	within	limits	when	working
with	a	PaaS	(depending	on	the	contract	the	client	has	with	the	host).	However,	realize	that	PaaS	is
oriented	toward	development	needs,	so	the	developer	takes	precedence	when	it	comes	to
performing	some	tasks	that	an	administrator	might	normally	perform.	In	addition,	PaaS	relates	to
development,	not	production	setups,	so	the	host	may	take	care	of	all	administration	tasks	locally.

Determining	Why	You	Should	Use	AWS
Even	though	AWS	has	a	lot	to	offer,	you	still	need	to	consider	how	it	answers	your	specific	needs.
This	consideration	goes	beyond	simply	determining	whether	you	really	want	to	move	to	cloud-based
services,	but	also	takes	into	account	other	offerings	that	might	serve	your	needs	just	as	well	(if	not
better).	Even	though	this	book	is	about	AWS,	you	should	compare	AWS	with	other	cloud	services.	You
may	choose	to	use	AWS	as	part	of	your	solution	rather	than	as	the	only	solution.	Of	course,	this	means
knowing	the	areas	in	which	AWS	excels.	The	following	sections	address	both	of	these	possibilities:
using	cloud	services	other	than	AWS,	or	in	addition	to	it.

Comparing	AWS	to	other	cloud	services
You	have	many	ways	to	compare	cloud	services.	One	of	the	ways	in	which	companies	commonly	look
at	services	is	by	the	market	share	they	have.	A	large	market	share	tends	to	ensure	that	the	cloud	service
will	be	around	for	a	long	time	and	that	many	people	find	its	services	both	useful	and	functional.	A
recent	InfoWorld	article	(http://www.infoworld.com/article/3065842/cloud-
computing/beyond-aws-the-clouds-next-stage.html)	points	out	that	AWS	currently	corners	70
to	80	percent	of	the	cloud	market.	In	addition,	AWS	revenues	keep	increasing,	which	lets	Amazon
continue	adding	new	features	while	maintaining	existing	features	at	peak	efficiency.

	The	cloud	services	marketplace	continues	to	change	at	a	frantic	pace,	so	you	need	to	keep	up-
to-date	on	the	various	offerings	that	each	provider	supplies.	In	addition,	you	need	to	track	pricing
and	other	factors	that	affect	your	application	development	process.	Your	application	development
needs	also	change	over	time,	which	means	that	the	services	you	use	today	may	not	meet	your
needs	tomorrow.	In	short,	don’t	assume	that	the	choices	you	make	are	fixed.

	Large	market	share	and	capital	to	invest	don’t	necessarily	add	up	to	a	cloud	service	that
fulfills	your	needs.	You	also	need	to	know	that	the	host	can	provide	the	products	you	need	in	a

http://www.infoworld.com/article/3065842/cloud-computing/beyond-aws-the-clouds-next-stage.html

form	that	you	can	use.	The	AWS	product	list	appears	at	http://aws.amazon.com/products/.	It
includes	all	the	major	IaaS,	SaaS,	and	PaaS	categories.	However,	you	should	compare	these
products	to	the	major	AWS	competitors:

Cisco	Metapod	(http://www.cisco.com/c/en/us/products/cloud-systems-
management/metapod/index.html)

Google	Cloud	Platform	(https://cloud.google.com/products/)

Joyent	(https://www.joyent.com/)

Microsoft	Azure	(https://azure.microsoft.com/)

Of	the	competitors	listed	here,	Google	Cloud	Platform	comes	closest	to	offering	the	same	feature	set
found	in	AWS.	However,	in	looking	at	the	Google	offerings,	you	should	note	the	prominence	of
machine	learning	services	that	aren’t	found	in	AWS.	On	the	other	hand,	AWS	has	more	to	offer	in	the
way	of	the	Internet	of	Things	(IoT),	applications,	and	mobile	services.

Each	of	the	vendors	offering	these	services	is	different.	For	example,	Joyent	offers	a	simple	setup	that
may	appeal	more	strongly	to	an	SMB	that	has	only	a	few	needs	to	address	and	no	desire	to	become
involved	in	a	complex	service.	Microsoft,	on	the	other	hand,	has	strong	SQL	database-management
support	as	well	as	the	connection	with	the	Windows	platform	that	businesses	may	want	to	maintain.
The	point	is	that	you	must	look	at	each	of	the	vendors	to	determine	who	can	best	meet	your	needs
(although,	as	previously	stated,	most	people	are	voting	with	their	dollars	on	AWS).

Defining	target	areas	where	AWS	works	best
In	looking	at	the	services	that	AWS	provides,	you	can	see	that	the	emphasis	is	on	enterprise
productivity.	For	example,	Google	Cloud	Platform	offers	four	enhanced	machine	learning	services	that
you	could	use	for	analysis	purposes,	but	AWS	offers	only	one.	However,	Google	Cloud	Platform	can’t
match	AWS	when	it	comes	to	mobile	service,	which	is	an	area	that	users	most	definitely	want	included
for	accessing	applications.	Unless	your	business	is	heavily	involved	in	analysis	tasks,	the	offerings
that	AWS	provides	are	significantly	better	in	many	ways.	Here	are	the	service	categories	that	AWS
offers:

Compute
Storage	and	content	delivery
Database
Networking
Analytics
Enterprise	applications
Mobile	services
IoT
Developer	tools
Management	tools

http://aws.amazon.com/products/
http://www.cisco.com/c/en/us/products/cloud-systems-management/metapod/index.html
https://cloud.google.com/products/
https://www.joyent.com/
https://azure.microsoft.com/

Security	and	identity
Application	services

Considering	the	app	types	that	AWS	supports	best
Theoretically,	you	could	create	just	about	any	kind	of	application	imaginable	using	AWS.	The
difference	isn’t	in	what	tasks	the	application	would	execute	or	how	the	application	would	manage	data
—	these	issues	are	the	same	as	when	working	at	the	desktop.	What	you	need	to	consider	is	where	the
application	would	execute,	which	means	understanding	the	capabilities	of	the	underlying	cloud
environment	in	order	to	determine	which	applications	that	environment	will	support.	You	can	divide
AWS	application	types	into	these	areas:

End-user	applications	that	the	user	accesses	directly	using	a	browser.
End-user	applications	that	currently	execute	within	a	browser	but	are	augmented	by	background
calls	to	AWS.
End-user	applications	that	currently	execute	on	the	desktop	but	are	augmented	by	background	calls
to	AWS.
Management	applications	that	interact	directly	with	AWS.
Web-service	applications	that	react	to	calls	from	a	remote	application.
Web-service	applications	that	use	a	polled	publish/subscribe	model.
Web-service	applications	that	use	a	push	publish/subscribe	model.

You	can	come	up	with	other	application	types.	This	list	gives	you	an	idea	of	what’s	possible.	The	main
point	is	that	you	still	need	to	know	something	about	the	underlying	environment.	For	example,	if	you
want	to	create	browser-based	applications,	you	might	rely	on	the	Elastic	Beanstalk	service,	which
provides	support	for	these	default	platforms:

Apache	Tomcat	for	Java	applications
Apache	HTTP	Server	for	PHP	applications
Apache	HTTP	Server	for	Python	applications
Nginx	or	Apache	HTTP	Server	for	Node.js	applications
Passenger	or	Puma	for	Ruby	applications
Microsoft	IIS	7.5,	8.0,	and	8.5	for	.NET	applications
Java	SE
Docker
Go

	Consequently,	the	app	types	that	AWS	supports	best	is	partly	determined	by	the	service	that
you	use	and	which	features	you	add	to	that	service.	However,	just	as	you	can	extend	Elastic

Beanstalk	to	support	other	languages,	you	can	also	modify	how	the	other	services	work	as	well.
Extending	a	service	necessarily	means	being	able	to	run	other	app	types.	The	bottom	line	is	that
you	need	to	consider	these	issues:

Determining	which	service	meets	your	app	needs	best	directly	out	of	the	package.
Defining	which	service	features	you	need	to	make	the	app	run	as	well	as,	if	not	better	than,	the
same	app	when	run	locally.
Expanding	the	service	as	needed	to	meet	custom	requirements.
Obtaining	third-party	package	support	as	needed	to	allow	data	and	other	resources	access.
Considering	the	need	to	modify	application	functionality	to	ensure	full	service	in	the	cloud
environment.

	Don’t	get	the	idea,	however,	that	creating	an	app	in	the	cloud	is	precisely	the	same	as	creating
an	app	on	your	local	system	or	within	a	browser	environment.	The	cloud	does	present	challenges
(as	described	throughout	the	book).	For	example,	when	working	with	the	cloud,	you	must
consider	latency	issues	that	you	might	not	need	to	consider	when	running	the	app	in	other
environments.	After	all,	you’re	still	running	the	app	across	the	Internet.	You	might	also	experience
outages	beyond	your	control	(see	the	article	at
http://www.infoworld.com/article/3176098/cloud-computing/aws-outage-proves-

one-cloud-isnt-enough.html	for	details	on	an	11-hour	AWS	outage	that	affected	nearly	half
the	Internet).	If	you	have	an	app	that	is	so	critical	that	it	can	never	go	down,	you	may	need	to
revisit	the	local	data	center	or	rely	on	multiple	cloud	products,	which	means	coordinating	the
feature	set	of	those	products,	thereby	limiting	your	ability	to	leverage	the	flexibility	offered	by	a
specific	cloud	product.

Considering	the	AWS-Supported	Platforms
If	you	haven’t	dealt	with	the	cloud	yet,	you	might	be	tempted	to	think	of	platforms	as	a	specific
combination	of	items.	For	example,	when	viewing	your	own	local	setup,	you	have	a	server	that	runs	a
specific	operating	system	and	has	a	specific	set	of	hardware	resources.	The	system	has	a	specific
Database	Management	System	(DBMS)	installed	and	relies	on	certain	kinds	of	other	software	to
provide	end-user	resources.	The	development	platform	is	specific,	too.	You	use	a	particular	language
with	a	predefined	set	of	libraries	to	code	application	in	just	one	way.	The	cloud	doesn’t	work	this
way.	When	working	with	the	cloud,	you	have	an	array	of	operating	systems	that	can	support	any	of	a
number	of	DBMSs	and	has	access	to	a	wide	assortment	of	end-user	resource	products.

	Even	the	development	environment	is	different.	You	can	code	at	several	different	levels,	as
described	in	the	“Considering	the	app	types	that	AWS	supports	best”	section,	earlier	in	this
chapter.	In	fact,	when	using	the	AWS	Lambda	service	(https://aws.amazon.com/lambda/),

http://www.infoworld.com/article/3176098/cloud-computing/aws-outage-proves-one-cloud-isnt-enough.html
https://aws.amazon.com/lambda/

you	don’t	really	consider	platform	or	resources	in	the	conventional	sense	at	all.	What	you’re	most
interested	in	is	a	process	for	obtaining	a	particular	result	given	a	certain	bit	of	data	regardless	of
the	source	or	output.	The	environment	no	longer	really	matters;	what	does	matter	is	the	process
and	the	result	obtained	from	the	process.

With	all	these	caveats	and	differences	in	mind,	the	question	becomes	one	of	determining	the	best	way
to	use	particular	services	rather	than	what	functionality	you	have	available.	The	following	sections
give	you	a	quick	overview	of	how	to	obtain	more	information	about	AWS	support	for	specific	platform
features,	given	a	particular	service.

Obtaining	an	overview	of	the	supported	platforms
AWS	is	all	about	the	services.	You	can	see	these	services	divided	into	categories	at
https://aws.amazon.com/.	A	category	exists	for	every	need.	In	just	looking	at	the	broad	assortment
of	categories	shown	in	Figure	1-1,	you	could	get	overwhelmed	quite	quickly.

FIGURE	1-1:	AWS	Services	break	down	into	individual	categories.

The	problem	becomes	even	more	obvious	when	you	open	one	of	the	categories.	For	example,	Figure
1-2	shows	the	Compute	category,	which	is	the	first	place	you	should	go	to	discover	what	you	can
access	in	the	way	of	development	platforms.

https://aws.amazon.com/

FIGURE	1-2:	Each	category	has	a	listing	of	services	that	it	supports.

To	perform	most	tasks,	you	create	an	EC2	virtual	server.	Drilling	down	into	the	EC2	virtual	server
information,	you	find	a	wealth	of	instance	types	from	which	to	choose,	a	few	of	which	fall	into	the	free
tier	of	services.	The	instance	types	define	things	like	the	number	of	CPUs,	amount	of	memory,	and	type
of	storage	supplied	for	your	virtual	server.	You	also	need	to	consider	the	operating	system,	which
means	selecting	between	a	Windows	or	Linux	version,	in	this	case.

INSTANCE	TYPES	VERSUS	PHYSICAL	HARDWARE
An	instance	type	differs	from	having	real	hardware	in	an	important	way.	If	you	find	that	your	real	hardware	isn’t	supporting	a
need,	you	have	to	buy	more	physical	hardware.	Likewise,	when	the	rush	is	over,	you	need	to	get	rid	of	excess	hardware.
Using	a	virtual	server	means	that	you	can	change	the	configuration	as	needed,	including	the	operating	system	used.	Instead
of	having	to	physically	reconfigure	a	setup,	you	simply	define	new	characteristics	for	the	setup,	and	AWS	takes	care	of	the
low-level	details	for	you.

The	trade-off	can	come	in	the	form	of	cost.	When	reconfiguration	becomes	too	easy	and	people	find	that	they	can	access
nearly	infinite	resources,	they	tend	to	waste	resources,	and	applications	become	less	robust	and	efficient	(good	for	Amazon;
bad	for	your	organization).	In	addition,	the	ease	of	changing	a	configuration	can	lead	to	all	sorts	of	design	issues	and	even
infighting	in	the	various	developer	groups.	The	rest	of	the	book	deals	with	other	issues	that	crop	up	when	using	AWS	for
development;	just	be	aware	for	now	that	you	can’t	always	directly	equate	your	localized	or	web-based	development
environment	with	the	cloud-based	development	environment.

Choosing	an	appropriate	platform	for	your	needs
By	now,	you	should	have	the	idea	that	creating	an	appropriate	platform	isn’t	a	matter	of	finding	a	set	of
AWS	features	to	meet	your	app	needs.	What	it	comes	down	to	is	finding	the	set	of	features	that	helps
you	code

With	the	least	effort
In	the	shortest	time
For	the	least	amount	of	money

The	whole	issue	of	cost	can	become	significant	with	AWS	because	you	quickly	find	yourself	paying	all
sorts	of	hidden	fees	for	things	that	you	didn’t	know	you	needed	or	thought	would	be	free.	Although
Chapters	2	and	3	do	help	with	the	cost	considerations,	this	book	doesn’t	provide	the	full	treatment	of
the	topic	that	you	can	find	in	AWS	For	Admins	For	Dummies,	by	John	Paul	Mueller	(Wiley	2016).
However,	you	do	get	enough	information	to	make	smart	decisions	about	building	a	development
environment	and	using	that	environment	to	create	applications	(which	obviously	is	the	purpose	of	this
book).

The	best	way	to	find	an	appropriate	platform	for	your	development	needs	is	to	start	slowly,	using	one
of	the	services	at	a	time	and	adding	services	only	as	you	need	them,	rather	than	trying	to	build	a
complete	development	environment	at	the	outset.	If	you	attempt	to	create	a	complete	development
environment,	you’re	almost	certain	to	make	serious	mistakes	with	so	many	different	services	providing
such	a	great	amount	of	overlapping	functionality.	As	previously	mentioned,	most	developers	start	with
an	EC2	setup	and	possibly	add	the	Lambda	service	to	it	to	begin	experimenting	with	AWS	as	a	coding
platform.	AWS	also	provides	access	to	the	developer	tools	shown	in	Figure	1-3.	The	AWS	Command
Line	Interface	can	prove	extremely	helpful	in	getting	started	with	AWS	because	you	get	a	feel	for	how
things	work	in	an	interactive	environment.

FIGURE	1-3:	Amazon	provides	a	wealth	of	developer	tools	to	provide	development	support	at	a	variety	of	levels.

	Use	the	free-tier	services	(as	outlined	in	Chapters	2	and	3)	as	much	as	possible	at	the
beginning	to	reduce	the	cost	of	experimentation.	Only	when	you	see	an	actual	need	to	modify	your
configuration	to	use	paid	services	should	you	make	the	change.	Relying	on	this	approach	will
give	you	a	better	feel	as	to	how	to	make	your	setup	efficient	and	what	you	can	actually	expect	in
the	way	of	performance	using	less	capable	setups.

Chapter	2
Obtaining	Development	Access	to	Amazon

Web	Services
IN	THIS	CHAPTER

	Considering	the	limits	of	the	free	services	of	AWS
	Knowing	what	hardware	you	need	to	work	with	AWS
	Obtaining	your	AWS	developer	account
	Checking	your	setup

As	a	developer,	you	need	some	knowledge	of	administration	tasks	on	Amazon	Web	Services	(AWS)
before	you	can	do	much	else.	The	reason	is	that	you	need	to	set	up	and	configure	some	test	scenarios	to
work	with	when	performing	development	tasks.	Obviously,	you	don’t	want	to	ruin	a	perfectly	good
production	setup	by	using	untested	code.	Discovering	how	AWS	works	is	much	easier	if	you	have	your
own	account	and	resources	to	work	with.	Of	course,	you	don’t	want	to	have	to	pay	for	the	learning
time,	which	is	why	the	first	section	of	this	chapter	discusses	the	free	services	that	AWS	has	to	offer,
and	there	are	a	lot	of	them.	Unfortunately,	free	resources	don’t	always	remain	free,	and	sometimes	free
is	an	illusion,	so	the	chapter	discusses	these	issues	as	well.

Development	also	means	having	some	amount	of	hardware	available	for	the	task.	In	this	case,	you
actually	need	several	levels	of	hardware:

User:	To	even	start	working	with	your	computer,	you	have	basic	user	needs	to	meet.	This	chapter
assumes	that	you	have	the	hardware	required	to	run	the	user	environment	for	your	system.	Because
you	could	end	up	simulating	more	than	one	user,	you	may	want	to	ensure	that	your	system	well
exceeds	the	requirements	for	a	single	user,	even	when	you	plan	to	perform	simulations	through	task
switching	(placing	one	user	in	hibernation	while	you	act	as	another).
Network:	You	require	a	connection	to	the	Internet	and	any	local	network	resources	needed	to
develop	your	application.	This	chapter	doesn’t	cover	any	of	these	requirements.	However,	given
that	you	plan	to	perform	development	tasks	over	the	network,	you	may	need	to	talk	with	your
network	administrator	to	ensure	that	you	have	proper	rights	and	any	additional	hardware	required
to	allow	the	bandwidth	required	to	work	with	AWS.
Development:	The	programming	language	you	choose	will	have	certain	hardware	requirements,
as	will	any	developer	add-ons	you	require.	This	chapter	assumes	that	you	know	what	these
requirements	are	for	your	particular	setup.	You	must	plan	this	hardware	in	addition	to	any	other
hardware	required	for	other	purposes.
AWS:	Interestingly	enough,	your	AWS	setup	also	requires	hardware.	This	chapter	discusses	the
hardware	you	typically	want	to	have	to	ensure	that	AWS	works	properly.	This	hardware	is	in
addition	to	the	hardware	you	need	to	run	your	user,	networking,	and	development	environment.

To	work	as	an	AWS	developer,	you	actually	need	two	levels	of	AWS	access.	The	first	level	of	access
provides	an	account	that	you	use	to	set	up	and	configure	services	such	as	Amazon	Simple	Storage
Service	(S3).	The	second	level	of	access	is	your	developer	account,	which	includes	obtaining	a
development	key	that	you	use	to	access	AWS	through	code.	This	chapter	helps	you	obtain	both	levels
of	access.

The	final	section	of	the	chapter	helps	you	test	your	setup.	You	perform	the	same	tasks	that	you	perform
when	developing	an	application,	but	a	short	version	of	them.	In	this	case,	you	perform	a	quick	S3
setup,	test	it,	and	then	access	it	using	scripted	code.	The	idea	is	to	ensure	that	you	actually	can	access
AWS	as	you	work	through	the	examples	later	in	the	book.

Discovering	the	Limits	of	Free	Services
Amazon	does	provide	the	means	for	using	many	of	its	cloud	services	for	free.	In	fact,	you	can	see	some
of	these	services	at	http://aws.amazon.com/free/.	However,	as	you	look	through	the	list	of
services,	you	see	that	some	expire	but	others	don’t.	In	addition,	some	have	limits	and	others	don’t.
Those	that	do	have	limits	don’t	have	the	same	limits,	so	you	need	to	watch	usage	carefully.	It’s	really
quite	confusing.	The	following	sections	help	clarify	what	Amazon	actually	means	by	saying	some
services	are	free.

Expiring	services	versus	non-expiring	services
Many	of	the	AWS	services	you	obtain	through	the	free	tier	have	expiration	dates,	and	you	need	to
consider	this	limitation	when	evaluating	and	possibly	using	the	service	to	perform	useful	work.	Figure
2-1	shows	examples	of	services	with	an	expiration	date.	Notice	that	you	must	begin	paying	for	the
service	12	months	after	you	begin	using	it.

http://aws.amazon.com/free/

FIGURE	2-1:	Some	services	have	an	expiration	date	when	you	must	begin	paying	for	it.

In	some	cases,	the	product	itself	doesn’t	have	an	expiration	date,	but	the	service	on	which	it	runs	does.
For	example,	when	viewing	the	terms	for	using	the	free	software,	the	software	itself	is	indeed	free.
However,	to	run	the	software,	you	must	have	the	required	service,	which	does	come	with	an	expiration
date	(see	Figure	2-2).	In	this	case,	the	Amazon	Mobile	Analytics	depend	on	Amazon	S3	(listed	near
the	bottom	of	the	description).	You	have	access	to	100	million	events	per	month	free,	but	in	order	to
export	your	event	data,	you	need	S3,	which	has	an	expiration	date.	Notice	also	that	after	you	reach	the
100	million	events	level,	you	must	pay	an	additional	amount	for	each	additional	million	events,	so	free
doesn’t	necessarily	remain	free.

FIGURE	2-2:	Software	may	be	free,	but	the	service	on	which	it	runs	might	not	be.

You	also	have	access	to	some	products	that	are	both	free	and	have	no	expiration	date.	These
nonexpiring	offers	still	have	limitations	(and	often	caveats),	but	you	don’t	have	to	worry	about	using
those	products	within	the	limits	for	however	long	you	want	(or	until	Amazon	changes	the	terms).
Figure	2-3	shows	an	example	of	this	kind	of	service.	Notice	that	the	service	is	free,	doesn’t	expire,
and	doesn’t	depend	on	a	service	that	expires.	However,	you	must	pay	for	both	throughput	and	storage,
so	a	cost	is	still	involved.

FIGURE	2-3:	A	few	services	don’t	come	with	expiration	dates.

	Knowing	the	terms	under	which	you	use	a	service	is	essential.	The	free	period	for	services
with	an	expiration	date	goes	all	too	quickly,	and	you	may	suddenly	find	yourself	paying	for
something	that	you	thought	remained	free	for	a	longer	time	frame.	Given	that	Amazon	can	change
the	terms	of	usage	at	any	time,	you	need	to	keep	checking	the	terms	of	service	for	the	services	that
you	use.	A	service	that	lacks	an	expiration	date	today	may	have	an	expiration	date	tomorrow.

ABOUT	THE	GRAPHICS	IN	THE	BOOK
The	material	in	this	book	works	on	several	different	platforms,	including	Windows,	Linux,	and	Mac	OS	X.	However,	presenting
screenshots	of	every	platform	you	can	use	with	AWS	isn’t	practical	because	the	book	would	end	up	being	filled	with	pictures
rather	than	content.	For	this	reason,	the	screenshots	you	see	in	the	book	are	from	a	Windows	7	system	using	the	Firefox
browser,	where	appropriate.	Depending	on	the	operating	system,	browser,	and	other	software	you	use,	you	may	not	see
precisely	the	same	screenshots	on	your	system.	In	looking	at	the	graphics,	you	should	compare	content	rather	than	precise
appearance.	Any	differences	in	appearance	are	normal,	and	you	don’t	need	to	worry	about	them.

Considering	the	usage	limits
Look	again	at	Figures	2-1	through	2-3.	Note	that	all	these	products	have	some	sort	of	usage	limit
attached	to	them	—	even	the	free	software	—	because	of	the	software’s	reliance	on	an	underlying
service.	(Some	software	relies	on	more	than	one	service,	so	you	must	also	consider	this	need.)	For
example,	you	can	use	Amazon	Elastic	Compute	Cloud	(EC2)	for	750	hours	per	month	as	either	a	Linux
or	Windows	setup.	A	31-day	month	contains	744	hours,	so	you	really	don’t	have	much	leeway	if	you
want	to	use	the	EC2	service	continuously.

	The	description	then	provides	an	example	of	usage.	Amazon	bases	the	usage	terms	on
instances.	Consequently,	you	have	access	to	a	single	Linux	or	single	Windows	setup.	If	you
wanted	to	work	with	both	Linux	and	Windows,	you	would	need	two	instances	and	could	use	them
for	only	15	days	and	15	hours	each	month.	In	short,	you	need	to	exercise	care	in	how	you	set	up
and	configure	the	services	to	ensure	that	you	don’t	exceed	the	usage	limits.

The	free,	nonexpiring	services	also	have	limits.	For	example,	when	working	with	Amazon
DynamoDB,	you	have	access	to	25GB	of	storage,	25	units	of	read	capacity,	and	25	units	of	write
capacity	(see	Figure	2-4	for	details).	Theoretically,	this	is	enough	capacity	to	handle	200	million
requests	each	month.	However,	whether	you	can	actually	use	all	that	capacity	depends	on	the	size	of
the	requests	and	how	you	interact	with	the	service.	You	could	easily	run	out	of	storage	capacity	long
before	you	run	out	of	request	capacity	when	working	with	larger	files,	such	as	graphics.	Again,	you
need	to	watch	all	the	limits	carefully	or	you	could	find	yourself	paying	for	a	service	that	you	thought
was	free.

FIGURE	2-4:	Verify	the	free-tier	usage	details	for	a	service	before	you	commit	to	using	it.

Considering	the	Hardware	Requirements
No	matter	how	many	services	AWS	offers,	you	still	require	some	amount	of	hardware	to	use	the
services.	The	amount	of	hardware	you	require	when	working	with	services	in	the	cloud	is	minimal
because	the	AWS	hardware	does	all	the	heavy	lifting.	When	working	with	services	locally,	you	need
additional	hardware	because	AWS	is	no	longer	doing	the	heavy	lifting	for	you.	Therefore,	you	should
consider	different	hardware	requirements	depending	on	where	you	host	the	AWS	service.	The

following	sections	help	you	obtain	additional	information	about	working	with	both	cloud	and	local
services.

Hosting	the	services	locally
Hidden	in	the	AWS	documentation	is	all	sorts	of	useful	information	about	various	services.	For
example,	AWS	Storage	Gateway	(http://aws.amazon.com/documentation/storage-gateway/)
will	connect	an	on-premises	software	appliance	(an	application	combined	with	just	enough	operating
system	capability	to	run	on	hardware	or	on	a	virtual	machine)	with	cloud-based	storage.	In	other
words,	you	use	the	gateway	to	connect	your	application	to	the	data	storage	it	requires.	It	might	seem	as
if	running	the	gateway	in	the	cloud	would	be	a	good	idea	because	you	wouldn’t	need	to	invest	in
additional	hardware.	However,	when	you	look	at	the	requirements	shown	in	Figure	2-5,	you	see	that
the	AWS	Storage	Gateway	comes	with	specific	hardware,	instance,	and	storage	requirements.	(Only
the	hardware	requirements	appear	in	Figure	2-5.)	The	important	thing	to	understand	is	that	the	cloud
presents	limits	that	you	must	consider	during	any	planning	stage.

FIGURE	2-5:	Using	cloud-based	services	can	come	with	limitations.

After	you	make	certain	that	you	can	run	your	intended	configuration,	you	can	begin	to	consider	the
advantages	and	disadvantages	of	working	in	the	cloud.	For	example,	when	hosting	the	service	in	the
cloud,	you	get	automatic	scaling	as	needed,	and	Amazon	performs	many	of	the	administrative	tasks	for
you.	Chapter	1	discusses	many	of	the	advantages	of	the	cloud.	However,	for	a	realistic	perspective,
you	must	offset	these	advantages	with	awareness	of	the	disadvantages,	such	as:

Potential	for	lower	application	speed

http://aws.amazon.com/documentation/storage-gateway/

Need	to	maintain	a	reliable	Internet	connection
Loss	of	flexibility
Vendors	going	out	of	business

Even	though	basic	hardware	needs	become	less	expensive,	you	do	need	to	consider	additional
expenses	in	the	form	of	redundancies.	Most	organizations	find	that	the	hardware	costs	of	moving	to	the
cloud	are	substantially	less	than	maintaining	a	full	IT	department,	which	is	why	they	make	the	move.
However,	you	must	make	the	move	with	the	understanding	that	you	have	other	matters	to	consider	when
you	do.

Hosting	the	services	in	the	cloud
When	hosting	services	locally,	you	need	to	provide	all	the	required	infrastructure,	which	can	get
expensive.	AWS	does	provide	guidance	on	the	minimum	requirements	for	hosting	a	service	locally.
For	example,	Figure	2-5	shows	the	requirements	for	the	AWS	Storage	Gateway.

	A	good	rule	of	thumb	when	hosting	services	locally	is	to	view	any	vendor-supplied
requirements	as	minimums.	If	you	don’t	plan	to	load	the	service	heavily,	these	minimums	usually
work.	However,	when	you	click	the	Optimizing	Gateway	Performance	link,	the	first	suggestion
you	see	is	to	add	resources	to	your	gateway,	as	shown	in	Figure	2-6.	Planning	for	too	much
capacity	is	better	than	for	not	enough,	but	getting	the	configuration	as	close	as	possible	to	what
you	need	will	always	help	financially.

FIGURE	2-6:	Plan	ahead	for	sufficient	resources.

Not	all	the	services	will	work	locally,	but	you	may	be	surprised	to	find	that	many	do.	The	issue	is	one
of	defining	precisely	how	you	plan	to	use	a	given	service	and	the	trade-offs	that	you’re	willing	to
make.	For	example,	when	hosting	a	service	locally,	you	may	find	it	hard	to	provide	the	same	level	of
connectivity	that	you	could	provide	to	third	parties	when	hosting	the	same	service	in	the	cloud.

Defining	a	good	development	environment
After	you	know	about	the	resources	required	for	AWS	and	have	accounted	for	the	basics	of	your	setup,
you	need	to	consider	your	development	environment.	The	first	issue	you	must	consider	is	one	of
language.	AWS	doesn’t	care	what	IDE	you	use	(although	the	choice	of	IDE	determines	which	features
you	have	available	for	remote	access),	but	it	does	care	about	language.	You	must	verify	that	AWS
supports	the	language	of	your	choice	for	the	service	you	want	to	access.	For	example,	Figure	2-7
shows	the	choices	for	Simple	Queue	Service	(SQS).

FIGURE	2-7:	Make	certain	that	AWS	provides	support	for	the	language	you	want	to	use.

You	can	create	a	deployment	environment	using	EC2.	The	tutorial	at
http://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html	describes
how	to	perform	this	task.	The	main	advantage	of	this	approach	is	that	you	can	theoretically	develop
AWS	applications	from	anywhere	because	development	no	longer	requires	a	local	system	with
specific	resources.	However,	this	approach	is	most	definitely	not	free,	and	it	means	that	you	must	have
a	reliable	Internet	connection	from	wherever	you	want	to	perform	development	tasks	—	which	is	not	a
problem	at	work,	but	possibly	an	issue	at	home.	The	cloud-based	development	approach	uses	the	AWS
Command	Line	Interface	(CLI),	which	is	a	tool	you	begin	using	in	the	“Installing	the	Command	Line
Interface	Software”	section	of	Chapter	5.

The	main	reason	to	use	a	localized	development	environment	is	that	you	retain	access	to	local
resources	and	the	code	libraries	that	your	organization	currently	relies	on	to	perform	development
tasks.	This	option	also	has	an	advantage	in	reliability	because	you	don’t	rely	on	a	remote	connection	to
use	it.	If	your	Internet	connection	goes	down,	you	can	continue	developing	code	(but	testing	isn’t
possible	until	the	connection	is	restored).	When	using	this	option,	you	do	need	additional	bandwidth
—	at	least	for	testing	purposes	and	permissions	for	the	AWS	access	through	the	organization’s
firewall.

	You	aren’t	limited	to	just	two	options	when	working	with	AWS.	For	example,	you	could	use	a
local	development	environment	but	place	your	code	on	S3.	The	use	of	cloud-based	data	storage
means	that	you	can	have	localized	setups	in	several	locations	(so	that	you	retain	access	to	local

http://docs.aws.amazon.com/cli/latest/userguide/tutorial-ec2-ubuntu.html

resources)	and	still	gain	advantages	of	cloud-based	development,	such	as	having	access	to	your
code	from	any	location	where	you	have	a	development	environment	configured.	The	tutorial	at
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/chapter-devenv.html	is
also	interesting	because	it	tells	you	how	to	configure	your	development	environment	to	use
Elastic	Beanstalk	for	project,	source	control,	and	repository	use.	As	with	a	localized
development	environment,	you	still	need	required	permissions	for	Internet	access	and	enough
bandwidth	to	handle	the	increase	in	data	requests	to	make	this	option	work	well.	In	fact,	the
bandwidth	requirements	are	higher	than	a	local	configuration,	and	the	development	environment
must	work	with	remote	resources.

Choosing	the	correct	development	environment	isn’t	easy,	as	described	by	articles	such	as	the	one	at
https://blog.rackspace.com/the-case-for-using-aws-for-development-environments.	In
many	cases,	the	choice	becomes	one	of	personal	preference	and	organizational	requirements.	For
example,	using	a	cloud-based	development	solution	might	not	be	an	option	when	dealing	with	sensitive
development	tasks;	security	needs	could	trump	other	wants.

Getting	Signed	Up
The	sign-up	process	lets	you	interact	with	AWS.	To	use	AWS,	you	must	have	two	levels	of	access:

User:	The	first	level	grants	you	user-level	access	to	the	various	services.	Even	though	this	book
doesn’t	provide	you	with	an	in-depth	view	of	these	services,	knowing	how	to	use	them	is	a	plus.
AWS	does	provide	tutorials	to	help	you	out,	but	you	may	also	want	to	obtain	AWS	For	Admins	For
Dummies,	by	John	Paul	Mueller	(Wiley),	for	more	detailed	information	on	the	services	you	can	use
for	free	to	keep	your	learning	curve	costs	to	a	minimum.
Developer:	The	second	level,	which	you	must	obtain	after	getting	user-level	access,	is	developer
access.	Amazon	wants	to	know	who	is	using	its	service	for	a	number	of	reasons,	including	billing,
which	means	you	need	a	developer	ID	to	obtain	the	required	programmatic	access	to	services.

With	these	requirements	in	mind,	the	following	sections	help	you	get	signed	up	so	that	you	can	start
using	AWS.

Obtaining	an	account
Before	you	can	really	do	anything	other	than	plan,	you	need	an	account.	Discovering	the	wonders	of
AWS	is	a	hands-on	activity,	so	you	really	do	want	to	work	with	it	online.	Consequently,	this	book
assumes	that	you’ve	gone	through	the	free	sign-up	process	described	in	the	following	steps:

1.	 Navigate	your	browser	to	http://aws.amazon.com/.
The	main	Amazon	Web	Services	page	appears.

2.	 Click	Create	a	Free	Account.
Unless	you	already	signed	into	Amazon,	you	see	a	Sign	In	or	Create	an	AWS	Account	dialog	box
like	the	one	shown	in	Figure	2-8.	If	you	already	have	an	Amazon	account	and	want	that	account
associated	with	AWS,	you	can	sign	in	using	your	Amazon	account.	Otherwise,	you	need	to	create	a
new	account.

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/chapter-devenv.html
https://blog.rackspace.com/the-case-for-using-aws-for-development-environments
http://aws.amazon.com/

3.	 Sign	into	an	account	or	create	a	new	one	as	required.
The	Contact	Information	page	appears,	as	shown	in	Figure	2-9.	Notice	that	different	pages	exist	for
company	and	personal	accounts.

4.	 Supply	the	required	company	or	personal	contact	information.	Read	and	accept	the	customer
agreement.

5.	 Click	Create	Account	and	Continue	when	you	complete	the	form.
You	see	the	Payment	Information	page,	shown	in	Figure	2-10.	Be	aware	that	Amazon	will	bill	you
for	any	usage	in	excess	of	the	free-tier	level.	Click	View	Full	Offer	Details	if	you	have	any
questions	about	the	level	of	support	provided	before	you	enter	your	credit	or	debit	card
information.

6.	 Provide	the	required	credit	or	debit	card	information,	supply	the	address	information	needed,
and	then	click	Continue.
You	see	the	Identify	Verification	page,	shown	in	Figure	2-11.	Amazon	performs	an	automated	call
to	verify	your	identity.	You	see	a	PIN	provided	onscreen.	During	the	call,	you	say	or	type	this	PIN
into	your	telephone	keypad.	The	screen	automatically	changes	as	you	perform	each	step	of	the
identification	process.

7.	 Click	Continue	to	Select	Your	Support	Plan.
You	see	a	listing	of	support	plans,	as	shown	in	Figure	2-12.	Only	the	Basic	plan	is	included	as	part
of	the	free	tier.	If	you	want	to	obtain	additional	support,	you	must	pay	a	monthly	fee	for	it.	This	is
an	example	of	one	of	the	potential	charges	that	you	might	pay	for	the	free-tier	service.	You	have	the
following	support-plan	options:

Basic:	Free	support	that	Amazon	offers	as	part	of	the	free-tier	support.	Amazon	doesn’t
offer	any	support	through	this	option.	You	must	instead	rely	on	community	support,	which
usually	works	fine	for	experimentation.
Developer:	Support	that	comes	at	$29/month	at	the	time	of	this	writing.	A	single	developer
(or	other	organizational	representative)	can	contact	the	Support	Center	and	expect	a
response	within	12	to	24	hours.	However,	if	you’re	serious	about	developing	an	application
and	anticipate	using	third-party	products,	you	really	need	to	consider	the	Business	level.
Business:	Support	that	comes	at	$100/month	at	the	time	of	this	writing.	A	business	user	may
contact	the	Support	Center	by	phone	and	expect	a	one-hour	response	to	urgent	support
problems	as	well	as	obtain	help	with	third-party	products.
Enterprise:	Support	that	comes	at	$15,000/month.	This	is	the	level	of	support	provided	for
organizations	that	use	AWS	for	mission-critical	applications.	The	response	time	is	only	15
minutes,	and	Amazon	is	willing	to	provide	all	sorts	of	technical	help.	Of	course,	the	price	is
a	tad	on	the	steep	side.

8.	 Choose	a	support	plan	and	click	Continue.
Normally,	you	see	a	welcome	page	like	the	one	shown	in	Figure	2-13.	(However,	you	might	also
see	a	message	saying	that	Amazon	is	setting	up	your	account	and	will	send	you	emails	when	your
account	is	ready.	Wait	for	the	emails	to	arrive	if	you	see	these	messages.)	At	this	point,	you	can
sign	into	the	console	and	try	a	few	tasks.	The	ten-minute	tutorials	are	helpful	in	getting	you	started.
The	next	section	of	the	chapter	gives	you	help	getting	started	as	well.

FIGURE	2-8:	Sign	into	or	create	an	Amazon	account.

FIGURE	2-9:	Supply	the	required	contact	information	for	the	kind	of	account	you	want.

FIGURE	2-10:	Provide	a	credit	or	debit	card	to	use	as	payment.

FIGURE	2-11:	Supply	the	information	needed	to	verify	your	identity.

FIGURE	2-12:	Select	the	level	of	support	needed	for	your	AWS	use.

FIGURE	2-13:	Start	using	AWS	to	perform	useful	tasks.

BE	SURE	TO	READ	THE	AWS	CUSTOMER	AGREEMENT!
Reading	the	customer	agreement	is	essential	because	it	contains	items	that	you	may	not	agree	with.	For	example,	Amazon
states	outright	in	section	3.2	that	your	data	will	remain	private	as	long	as	law	enforcement	doesn’t	make	a	request	to	look	at
it.	In	addition,	Amazon	won’t	tell	you	about	the	disclosure	of	your	information	to	the	government	should	the	government	issue
a	gag	order.	These	clauses	are	important	because	recent	events	have	shed	some	interesting	perspectives	on	these	issues.
For	example,	Apple	refused	to	cooperate	with	the	government	in	making	iPhone	data	available	by	breaching	iPhone	security
(see	the	article	at	https://www.washingtonpost.com/world/national-security/us-wants-apple-to-help-unlock-iphone-used-
by-san-bernardino-shooter/2016/02/16/69b903ee-d4d9-11e5-9823-02b905009f99_story.html).	Microsoft	also	has	a	pending
lawsuit	against	the	government	with	regard	to	electronic	gag	orders	(see	the	article	at
http://www.nytimes.com/2016/04/15/technology/microsoft-sues-us-over-orders-barring-it-from-revealing-

surveillance.html?_r=0).	These	issues	are	important,	and	you	need	to	know	what	you’re	signing	before	you	sign	it,	so	be
sure	to	read	the	agreement.

Getting	access	keys
You	use	access	keys	with	API	calls	to	allow	the	call	to	proceed.	Without	an	access	key,	AWS	rejects
any	requests	made.	Access	keys	come	in	two	parts:	public	and	secret.	To	safeguard	your	setup,	the
private	key	must	remain	private.	During	the	creation	process,	you	download	both	keys.	Make	sure	you
keep	them	in	a	safe	place.

	The	following	steps	help	you	create	the	access	keys	you	need	to	work	with	the	examples	in	the
book.	You	can’t	use	any	of	the	coded	examples	without	an	access	key.	The	access	key	found	in	the
book’s	code	is	an	example	key.	It	won’t	return	a	usable	result.

1.	 Navigate	your	browser	to	https://console.aws.amazon.com/iam/.
You	see	the	Identity	and	Access	Management	(IAM)	Console,	shown	in	Figure	2-14.

2.	 Click	Groups	in	the	Navigation	pane.
You	see	an	option	for	creating	a	new	group,	as	shown	in	Figure	2-15.

3.	 Click	Create	New	Group.

https://www.washingtonpost.com/world/national-security/us-wants-apple-to-help-unlock-iphone-used-by-san-bernardino-shooter/2016/02/16/69b903ee-d4d9-11e5-9823-02b905009f99_story.html
http://www.nytimes.com/2016/04/15/technology/microsoft-sues-us-over-orders-barring-it-from-revealing-surveillance.html?_r=0
https://console.aws.amazon.com/iam/

AWS	asks	you	to	provide	a	group	name.
4.	 Type	a	group	name	(the	book	uses	Developers)	and	click	Next	Step.

AWS	asks	you	to	attach	a	policy	to	the	group,	as	shown	in	Figure	2-16.	Normally	you	choose	a
policy	that	provides	just	the	level	of	access	required	by	that	group.	For	the	purposes	of	this	book,
because	you	spend	time	exploring	much	of	AWS,	you	choose	a	more	encompassing	policy.
However,	when	working	in	a	production	environment,	remember	to	use	policies	carefully.

5.	 Select	AdministratorAccess	and	click	Next	Step.
You	see	a	Review	page	where	you	can	review	the	group’s	settings.

6.	 Click	Create	Group.
The	group	is	now	ready	for	use.	You	see	it	in	the	Groups	tab	of	the	IAM	Console.	However,	you
still	need	to	create	a	user	account	to	obtain	the	required	access	keys.

7.	 Select	Users	in	the	Navigation	pane.
You	see	the	Users	tab	of	the	IAM	Console,	shown	in	Figure	2-17.

8.	 Click	Add	User.
AWS	asks	you	to	provide	a	username,	as	shown	in	Figure	2-18.	Note	that	this	page	also	provides
the	means	for	configuring	the	kind	of	user	access.

9.	 Type	a	username	(the	book	uses	John).
AWS	lets	you	add	more	than	one	user	at	a	time,	as	long	as	both	users	have	the	same	requirements.

10.	 Select	both	Access	Type	entries.
You	require	both	access	types	to	interact	with	the	examples	in	the	book.

11.	 Configure	the	password	settings	for	the	user	you	want	to	create.
The	default	is	to	autogenerate	a	password	and	then	require	the	user	to	change	it	during	the	next
login.	Because	you	want	to	create	an	account	for	yourself,	you	can	save	time	by	creating	a	custom
password	and	deselecting	the	option	that	requires	the	user	to	change	the	password	during	the	next
login.

12.	 Click	Next:	Permissions.
AWS	asks	you	to	set	permission	for	the	user,	as	shown	in	Figure	2-19.

13.	 Choose	Add	User	to	Group	and	then	select	the	Developers	entry	in	the	list	of	groups	shown.
14.	 Click	Next:	Review.

AWS	shows	you	the	configuration	for	your	user.
15.	 Click	Create	User.

AWS	generates	the	user	and	the	user’s	access	key.
16.	 Click	Download	.CSV.

Your	browser	downloads	a	.CSV	file	containing	the	public	and	secret	keys	for	your	user	account.
Keep	these	keys	in	a	safe	location.

FIGURE	2-14:	Use	the	IAM	Console	to	create	your	access	keys.

FIGURE	2-15:	The	Groups	tab	of	the	IAM	Console	lets	you	manage	groups.

FIGURE	2-16:	Choose	a	policy	for	the	group	you	create.

FIGURE	2-17:	The	Users	tab	of	the	IAM	Console	lets	you	manage	users.

FIGURE	2-18:	Create	a	username	and	access	type.

FIGURE	2-19:	Set	the	user	permissions.

	You	can	create	new	access	keys	as	needed	by	accessing	the	user’s	entry	on	the	Users	tab	of	the
IAM	Console	and	choosing	the	Security	Credentials	tab	of	the	individual	user’s	account.	The
Security	Credentials	tab	contains	a	Create	Access	Key	in	the	Access	Keys	area.	Every	time	you
create	a	new	access	key,	you	have	the	option	of	downloading	a	.CSV	file	containing	the	public
and	secret	keys.	To	remove	an	existing	key,	click	the	X	next	to	that	key’s	entry	on	the	Security
Credentials	tab.

Testing	Your	Setup
Now	that	you	have	a	free	account	to	use,	you	can	give	something	a	try.	In	this	case,	you	create	an	online

storage	area,	move	a	file	to	it,	copy	the	file	back	to	your	hard	drive,	and	then	delete	the	file	in	the
online	storage.	Moving	data	between	local	drives	and	the	AWS	cloud	is	one	of	the	most	common
activities	you	perform,	so	this	exercise	is	important,	even	if	it	seems	a	bit	simplistic.	The	following
steps	help	you	through	the	process	of	working	with	files	in	the	cloud:

1.	 Click	Sign	in	to	the	Console	or	choose	My	Account     AWS	Management	Console.
You	see	a	sign-in	page	similar	to	the	one	shown	in	Figure	2-8,	even	if	you	just	completed	the	sign-
up	process.

2.	 Sign	in	to	your	account.
You	see	an	AWS	Services	page	like	the	one	shown	in	Figure	2-20.

3.	 Select	S3	from	the	Services	dropdown	at	the	top	of	the	page.
You	see	an	introduction	to	the	Sample	Storage	Service	(S3)	page.	This	page	explains	a	little	about
S3.	Make	sure	to	read	the	text	before	you	proceed.
To	use	S3,	you	must	first	create	a	bucket.	The	bucket	will	hold	the	data	that	you	transfer	to	AWS.	In
this	case,	you	use	the	bucket	to	hold	a	file.

4.	 Click	Create	Bucket.
You	see	the	Create	a	Bucket	dialog	box,	shown	in	Figure	2-21.	The	Bucket	Name	field	contains	the
name	that	you	want	to	give	to	your	bucket.	Choose	a	name	that	seems	appropriate	for	the	bucket’s
use.	(See	the	bucket	naming	restrictions	at
http://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html).	The
Region	field	tells	where	your	bucket	is	physically	stored.	A	local	bucket	will	respond	faster,	but	a
bucket	somewhere	else	in	the	world	may	provide	additional	resilience	because	it	won’t	be	as
susceptible	to	local	events,	such	as	storms.

5.	 Type	a	bucket	name	(the	example	uses	aws4d.test-bucket)	and	select	a	region	(the	example
uses	Oregon);	then	click	Create.
You	see	a	new	page	with	a	list	of	all	your	buckets,	as	shown	in	Figure	2-22.	You	can	configure
each	bucket	differently	using	the	properties	shown	on	the	right	side	of	the	screen.	For	now,	use	the
default	properties	to	work	with	a	file.

6.	 Click	the	bucket	entry	you	just	created.
You	see	a	console	for	that	bucket	that	tells	you	the	bucket	is	empty.

7.	 Click	Upload.
You	see	an	Upload	–	Select	Files	and	Folders	dialog	box.

8.	 Click	Add	Files.
You	see	a	File	Upload	dialog	box	that	will	conform	to	the	standard	used	for	your	platform.

9.	 Select	the	file	you	want	to	upload	(the	example	uses	the	outline	for	this	book)	and	click	Open.
The	Upload	–	Select	Files	and	Folders	dialog	box	now	contains	a	list	of	the	files	you	plan	to
upload,	as	shown	in	Figure	2-23.

10.	 Click	Start	Upload.
The	file	is	added	to	your	bucket,	as	shown	in	Figure	2-24.

http://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

11.	 Select	the	box	next	to	the	file	you	uploaded.
Depending	on	the	browser’s	capabilities,	you	can	open	the	file	for	viewing	or	editing,	or	simply
download	it	to	your	system.

12.	 Choose	Actions     Delete.
You	see	a	dialog	box	asking	whether	you	want	to	delete	the	file.

13.	 Click	OK.
S3	deletes	the	file.	Your	bucket	is	now	empty	again.
Congratulations!	You	have	now	used	S3	to	perform	the	first	set	of	tasks	for	the	book.

14.	 Choose	<Your	Name>     Sign	Out.
AWS	logs	you	out	of	the	console.	Logging	out	when	you	finish	a	session	is	always	a	good	idea.

FIGURE	2-20:	The	console	provides	access	to	all	the	services	you	can	use.

FIGURE	2-21:	Define	a	name	and	region	for	your	bucket.

FIGURE	2-22:	S3	provides	a	listing	of	the	buckets	you	created.

FIGURE	2-23:	You	can	see	a	list	of	the	files	you	plan	to	upload	to	S3.

FIGURE	2-24:	The	file	now	appears	in	your	bucket.

Chapter	3
Choosing	the	Right	Services

IN	THIS	CHAPTER
	Understanding	the	free	services
	Discovering	which	services	work	best	with	your	application
	Defining	the	special	security	needs

There	seems	to	be	a	conspiracy	to	move	developers	to	the	cloud	whether	it	makes	sense	to	do	so	or
not.	Everywhere	you	read	about	development	moving	to	the	cloud,	and	the	reasons	for	doing	so	seem
dependent	mainly	on	saving	money.	In	some	cases,	you	also	read	reasons	that	focus	on	saving	time,
ensuring	remote	access	to	application	data,	enhancing	reliability,	and	a	host	of	other	issues,	but	the
focus	really	is	on	saving	money.

The	problem	is	that	if	you	don’t	choose	services	carefully,	moving	to	the	cloud	may	make	your
application	more	costly,	less	reliable,	and	less	accessible,	while	at	the	same	time	costing	you	a	lot
more	in	the	way	of	development	time.	Don’t	be	fooled	by	the	persuasive	literature	out	there;	moving	to
the	cloud	is	always	going	to	cost	you	in	terms	of	development	time.	After	all,	you	currently	have	a	fully
functional	application,	so	moving	that	application	to	the	cloud	will	cost	you	something.	Even	when
looking	at	new	development,	you	have	an	existing	code	base	to	use	now,	but	the	move	will	require	you
to	build	a	new	code	base	to	use	the	cloud	services.	Part	of	the	purpose	of	this	chapter	is	to	help	you
make	good	decisions	regarding	AWS,	and	the	best	way	to	do	that	is	to	emphasize	what	you	can	do	free.
Of	course,	you	do	eventually	need	to	move	to	paid	services,	and	this	chapter	considers	that
requirement	as	well.

Just	because	a	service	looks	interesting	and	might	be	useful	to	your	organization	doesn’t	mean	that	it
will	work	well	with	your	application.	AWS	often	provides	more	than	one	solution	to	meet	a	given
need,	and	choosing	the	right	solution	will	help	you	develop	an	application	faster	while	achieving	a
better	result.	For	example,	you	might	need	to	choose	between	Simple	Storage	Service	(S3),	Elastic
Block	Storage	(EBS),	or	Elastic	File	System	(EFS),	or	use	a	combination	of	two	or	more	of	the
services	to	make	your	application	work	right.	The	next	section	of	this	chapter	addresses	the
requirement	to	match	services	to	application	need.

The	final	section	of	this	chapter	reviews	security.	Some	developers	mistakenly	think	that	moving	an
application	to	the	cloud	reduces	security	needs	because	the	cloud	service	will	provide	part	of	that
security.	However,	the	security	you	receive	from	the	cloud	service	generally	protects	the	cloud
service,	not	your	application,	your	infrastructure,	or	any	required	connectivity	to	the	service.	In	fact,
you	might	find	that	you	need	a	lot	more	security	when	creating	a	cloud-based	application,	not	less.
Because	developers	are	commonly	held	responsible	for	adding	security	into	the	application	timeline,
ensuring	that	you	have	enough	time	allotted	in	your	schedule	is	essential.	In	addition,	don’t	forget	that
you	need	to	perform	a	lot	more	testing	when	moving	to	the	cloud	because	now	your	setup	is	open	to
any	hacker	who	decides	it	might	be	fun	to	break	in.

Getting	a	Quick	Overview	of	Free-Tier	Services
Chapter	2	discusses	specifics	concerning	the	meaning	of	free	when	it	comes	to	AWS.	Some	services
are	always	free;	some	are	free	for	a	limited	time	frame.	You	must	consider	the	limitations	attached	to
all	services,	and	some	free	items	(such	as	software)	are	dependent	on	services	that	come	with	a	price.
With	all	these	caveats	in	mind,	the	following	sections	discuss	the	various	free	services	so	that	you
know	what	tasks	each	free	service	performs.

	The	goal	is	to	understand	which	services	are	available	for	you	to	use	to	build	applications.	As
you	go	through	the	service	lists,	you	find	that	you	have	gaps	in	coverage	that	you	must	satisfy
through	custom	programming	or	other	third-party	services.	However,	AWS	has	a	lot	to	offer,	so
for	now,	just	take	the	time	needed	to	figure	out	how	to	use	the	existing	services	to	meet	your
application	needs.	Note	especially	issues	like	limits	on	API	requests,	data	storage,	and
bandwidth	when	reviewing	the	material.

Understanding	the	free	services
In	looking	at	the	AWS	pages,	you	may	have	noticed	that	they	don’t	supply	a	single	list	of	all	the	free
services.	What	you	get	instead	are	various	mixes	of	services	that	tell	you	something	about	the	services
but	don’t	really	help	you	understand	what	services	are	actually	available.	Table	3-1	lists	the	various
services	and	tells	you	the	vital	statistics	about	each	one	so	that	you	now	have	a	single	list	of	what	you
can	get	free.

TABLE	3-1	Free	AWS	Service	Summary
Service
Name Description Non-

expiring Limitations In
Beta

Amazon	API
Gateway

Allows	you	to	roll	your	own	API	for	use	in	applications	generated	by	your
own	organization	or	any	third	party	to	whom	you	give	access.	Developers
can	create,	publish,	maintain,	monitor,	and	secure	APIs	at	any	scale.
The	APIs	can	interact	with	web	applications	hosted	by	your	organization
or	with	Amazon	services	such	as	Amazon	EC2	and	AWS	Lambda.

No 1	million	API	calls/month No

Amazon
AppStream

Delivers	Windows	applications	to	any	device,	including	personal
computers,	tablets,	and	mobile	phones.	The	application	runs	in	the
cloud,	so	the	client	platform	need	not	run	Windows	to	use	the
application.	This	service	lets	you	integrate	custom	clients,	subscriptions,
identity,	and	storage	solutions.

No 20	free	hours/month No

Amazon
CloudFront

Defines	a	Content	Delivery	Network	(CDN)	used	to	send	content	from
Amazon	services	to	end	users.	This	service	supports	dynamic,	static,
streaming,	and	interactive	content.

No
50GB	data	transfer	out;
2,000,000	HTTP	and	HTTPS
requests

No

Amazon
CloudWatch

Monitors	the	AWS	cloud	resources	used	by	applications	that	you	run	on
AWS.	You	can	use	this	service	to	collect	and	track	metrics,	collect	and
monitor	log	files,	set	alarms,	and	automatically	react	to	changes	in	your
AWS	resources.	Essentially,	this	service	enables	you	to	track
application	activity	through	a	variety	of	methods,	such	as	log	files.

Yes

10	Amazon	Cloudwatch	custom
metrics;	10	alarms,	1,000,000
API	requests;	5GB	log	data
ingestion;	5GB	log	data	archive;
three	dashboards	with	up	to	50
metrics	each/month

No

Amazon
Cognito

Adds	user	sign-up	and	sign-in	to	web	and	mobile	apps.	It	also	allows
user	authentication	using	Facebook,	Twitter,	or	Amazon,	or	a	custom
authentication	solution.	The	resulting	apps	can	make	use	of	localized
data	storage	when	the	device	is	offline,	followed	by	data	synchronization
when	the	user	reconnects.

Yes

50,000	Monthly	Active	Users
(MAUs);	10GB	cloud	sync
storage/month	(12-month	trial
only);	1,000,000	sync
operations/month	(12-month	trial
only)

Yes

Amazon	Data
Pipeline

Transfers	data	between	the	various	Amazon	services	as	requested.	For
example,	you	can	request	to	move	data	among	services	such	as
Amazon	S3,	Amazon	RDS,	Amazon	DynamoDB,	and	Amazon	Elastic
MapReduce	(EMR).	This	service	also	lets	you	transform	the	data	so	that
the	data	appears	in	a	form	that	the	receiving	service	can	accept.	The
focus	of	this	service	is	on	creating	data	transfer	workloads.

No

Three	low-frequency
preconditions	running	on
AWS/month;	five	low-frequency
activities	running	on	AWS/month

No

Amazon
DynamoDB

Provides	access	to	a	NoSQL	database	service	that	supports	both
document	and	key-value	store	models.	A	NoSQL	database	is	a	high-
speed	nonrelational	database	model	that	specializes	in	ease	of
development,	scalable	performance,	high	availability,	and	resilience.

Yes
25GB	storage;	25	units	of	read
capacity;	25	units	of	write
capacity

No

Amazon
Elastic
Transcoder

Converts	(transcodes)	media	files	from	one	format	to	another,	normally	to
make	the	media	play	on	devices	such	as	mobile	phones,	tablets,	and
PCs.

Yes
20	minutes	of	Standard	Definition
(SD)	transcoding	or	10	minutes	of
High	Definition	(HD)	transcoding

No

Amazon
ElastiCache

Creates	an	in-memory	data	cache	that	improves	application	performance
by	transferring	data	from	a	long-term	storage	service,	such	as	Amazon
RDS,	to	memory.	This	service	supports	two	open-source,	in-memory
caching	engines:	Memcached	and	Redis.

No 750	hours	of	Amazon
ElastiCache	cache/month No

Amazon
Elasticsearch
Service

Deploys	the	open	source	Elastisearch	service,	now	simply	called	Elastic
(https://www.elastic.co/),	to	the	AWS	cloud,	where	you	can	use	it
to	perform	both	search	and	analysis	tasks.	Analysis	tasks	can	include
checking	logs,	monitoring	applications,	and	performing	clickstream
analysis.

No

750	hours/month	of	a	single
instance;	10GB/month	of	optional
Elastic	Block	Store	(EBS)
storage	(magnetic	or	general
purpose)

No

Amazon
Mobile
Analytics

Measures	app	usage	and	revenue,	which	lets	you	make	data-driven
decisions	about	app	monetization	and	engagement	in	real	time. Yes 100,000,000	events/month No

Amazon
Relational
Database
Service
(RDS)

Allows	storage	of	data	objects	as	part	of	a	relational	database.	Amazon
RDS	currently	supports	six	database	engines:
Amazon	Aurora
Oracle
Microsoft	SQL	Server
PostgreSQL
MySQL
MariaDB
You	can	also	use	any	combination	of	RDS	General	Purpose	(SSD)	or
Magnetic	storage.

No

750	hours	of	Amazon	RDS	single
instance/month;	20GB	of
database	storage;	10	million	I/Os;
20GB	of	backup	storage	for
automated	database	backups
and	DB	Snapshots

No

Amazon
Simple	Email
Service
(SES)

Enables	you	to	send	transactional	email,	marketing	messages,	or	other
types	of	high-quality	content	as	email	messages.	You	can	use	this
service	to	deliver	messages	to	an	Amazon	S3	bucket,	call	custom	code
using	an	AWS	Lambda	function,	or	publish	notifications	to	Amazon
SNS.

Yes

62,000	outbound
messages/month	using	Amazon
SES	from	an	Amazon	EC2
instance	directly	or	through	AWS
Elastic	Beanstalk;	1,000	inbound
messages/month

No

Amazon
Simple
Notification
Service
(SNS)

Creates	a	publication/subscription	model	for	providing	notifications	to
subscribers.	You	use	this	service	to	deliver	messages.	This	service
relies	on	the	Amazon	Simple	Queue	Service	(SQS).

Yes
1,000,000	requests;	100,000
HTTP	notifications;	1,000	email
notifications

No

Amazon
Simple
Queue
Service
(SQS)

Provides	a	fully	managed	queuing	service.	Queuing	lets	you	decouple
cloud	application	components	so	that	components	need	not	run	at	the
same	time.	This	service	is	often	used	with	Amazon	Simple	Notification
Service	(SNS).

Yes 1,000,000	requests No

Amazon
Simple
Storage
Service	(S3)

Allows	storage	of	data	objects	of	any	sort	in	the	cloud.	The	three	levels
of	storage	enable	you	to	perform	short-term	(Standard	service),	middle
tier	(Infrequent	Access,	IA),	and	long-term	storage	(Glacier).	You	can
also	configure	data	to	automatically	move	between	the	various	storage
levels	based	on	policies	and	uses.

No
5GB	of	Amazon	S3	standard
storage;	20,000	Get	requests;
2,000	Put	requests

No

Amazon
Simple
Workflow
Service
(SWF)

Enables	developers	to	build,	scale,	and	run	applications	that	have
parallel	processes	and	sequential	steps	in	the	background. Yes

1,000	Amazon	SWF	workflow
executions;	10,000	activity	tasks,
signals,	timers,	and	markers;
30,000	workflow	days

No

https://www.elastic.co/

AWS
CodeCommit

Manages	source	using	host	secure	and	highly	scalable	private	Git
repositories.	This	storage	technique	works	with	any	file	type.	You	must
supply	the	required	Git	tools.

Yes
5	active	users/month;	50GB	of
storage/month;	10,000	Get
requests/month

No

AWS
CodePipeline

Creates	a	continuous	application	update	delivery	pipeline.	You	use	this
service	to	build,	test,	and	deploy	your	code	based	on	the	release
process	models	you	define.

Yes One	active	pipeline/month No

AWS	Device
Farm

Performs	mobile	app	testing	against	real	phones	and	tablets	that	appear
within	the	cloud.	Using	this	service	lets	you	test	your	app	against	a
wider	assortment	of	devices	to	ensure	that	customers	won’t	encounter
problems.

Yes One-time	trial	of	250	device
minutes No

AWS	IoT

Allows	connected	devices	to	interact	with	cloud	applications	and	other
devices.	Developers	can	also	use	this	service	to	add	AWS	Lambda,
Amazon	Kinesis,	Amazon	S3,	Amazon	Machine	Learning,	Amazon
DynamoDB,	Amazon	CloudWatch,	AWS	CloudTrail,	and	Amazon
Elasticsearch	Service	support	to	applications.

No 250,000	messages	(published	or
delivered)/month Yes

AWS	Key
Management
Service
(KMS)

Manages	keys	used	to	encrypt	data.	The	service	lets	you	create	and
control	keys	using	Hardware	Security	Modules	(HSMs).	You	use	this
service	with	a	number	of	other	AWS	services	to	provide	a	secure
computing	environment.

Yes 20,000	free	requests/month No

AWS
Lambda

Runs	custom	application	code	without	the	need	for	provisioning	or
managing	servers.	You	upload	the	code	you	want	to	run,	and	AWS
Lambda	does	everything	needed	to	run	and	scale	your	code	with	high
availability.

Yes
1,000,000	free	requests/month;
3.2	million	seconds	of	compute
time/month

No

Data	Transfer
Transfers	data	between	the	various	Amazon	services	automatically.	For
example,	if	you	want	to	move	data	from	EC2	to	S3,	you	need	to	pay	for
the	transfer.

No
15GB	of	bandwidth	out,
aggregated	across	all	AWS
services

No

Elastic
Compute
Cloud	(EC2)

Provides	access	to	a	web	service	that	offers	resizable,	cloud-based
compute	capacity.	You	use	this	service	to	access	virtual	server	hosting. No

750	hours	of	Windows	or	Linux
platform	support/month;	750
hours	of	an	Elastic	Load	Balancer
with	15GB	data
processing/month;	30GB	of
Amazon	Elastic	Block	Storage;
500MB/month	of	Amazon	EC2
Container	Registry	storage

No

	Consider	some	of	the	limitations	within	Table	3-1.	For	example,	the	AWS	Device	Farm
service	access	doesn’t	expire.	However,	you	get	only	a	one-time	free	trial	of	250	device	minutes.
This	means	that	if	you	use	five	devices,	you	can	test	each	of	the	devices	for	only	50	minutes
before	the	free	offer	expires.	You	don’t	get	a	monthly	allotment	with	this	particular	service,	so
carefully	using	the	time	you	get	is	important.

When	reviewing	the	terms	of	usage	for	various	services,	you	need	to	read	carefully	and	ask	lots	of
questions.	For	example,	the	overview	of	Amazon	AppStream	tells	you	that	you	get	20	free	hours	per
month,	but	that’s	where	the	description	of	what	free	means	ends.	The	20	free	hours	apply	to	the	total	of
applications	and	devices	you’re	using.	For	example,	if	you	have	four	applications	to	run	on	five
devices,	you	have	only	an	hour	of	free	usage	per	month,	not	20	free	hours	as	you	might	initially	think.

	Some	of	the	services	will	also	seemingly	appear	out	of	nowhere	when	you	get	an	invoice	for
the	services	you	used.	For	example,	AWS	Data	Transfer	entries	will	appear	anytime	you	need	to
transfer	data	from	one	service	to	another.	These	transfers	occur	in	the	background,	so	you	may	not

even	realize	that	they’re	happening	(see	https://forums.aws.amazon.com/thread.jspa?
threadID=78446	for	an	explanation	of	one	such	instance).	The	blog	post	at
https://blog.cloudability.com/aws-data-transfer-costs-what-they-are-and-how-

to-minimize-them/	tells	you	how	you	can	minimize	these	costs.	In	addition,	the	blog	post	helps
you	understand	how	the	costs	are	tiered	based	on	where	the	move	takes	place,	such	as	between
regions.

Working	with	the	online	labs
People	learn	differently.	For	some	people,	structured,	hands-on	activities	beat	reading	or
experimenting	when	it	comes	to	learning	something	new.	Even	if	hands-on	activities	aren’t	a	first
choice,	having	multiple	learning-activity	types	tends	to	reinforce	new	skills	and	make	them	easier	to
retain.	That’s	why	an	online	lab,	such	as	quikLABS	(https://run.qwiklabs.com/),	in	which	you
can	obtain	structured,	hands-on	activities,	can	be	so	important	to	getting	up	to	speed	quickly.	Figure	3-
1	shows	the	quests	page	(explained	shortly)	for	this	site	found	at
https://run.qwiklabs.com/catalog.	Note	the	Developer	-	Associate	entry	designed	to	help	you
become	an	AWS	Certified	Developer.

FIGURE	3-1:	quikLABS	provides	you	with	hands-on	activities	that	help	you	learn	faster.

quikLABS	takes	a	game-like	approach	to	learning.	You	go	on	quests	to	obtain	specific	new	skills.
Each	time	you	complete	a	quest,	you	get	a	badge.	In	this	way,	the	site	offers	positive	feedback	to	make
the	learning	process	easier.	You	use	real	Amazon	services	rather	than	mockups	during	the	learning
phase,	so	what	you	learn	in	quikLABS	applies	directly	to	what	you	need	to	use	AWS.

	As	with	most	games,	you	need	credits	to	buy	services,	and	the	credits	cost	money.	As	you	can

https://forums.aws.amazon.com/thread.jspa?threadID=78446
https://blog.cloudability.com/aws-data-transfer-costs-what-they-are-and-how-to-minimize-them/
https://run.qwiklabs.com/
https://run.qwiklabs.com/catalog

see	in	Figure	3-1,	the	Developer	–	Associate	lab	costs	79	credits	and	requires	a	total	of	seven
hours	and	17	minutes	to	complete.	The	pricing	guide	appears	at
https://run.qwiklabs.com/payments/pricing.	Fortunately,	you	can	try	before	you	buy.
Check	out	the	free	labs	at	https://run.qwiklab.com/searches/lab?
keywords=introduction.	The	free	labs	will	have	Free	in	the	Cost	column.	Many	other	labs	on
this	page	require	just	one	credit,	making	them	nearly	free.

Choosing	a	free	services	path
The	best	way	to	start	with	AWS	is	to	choose	a	service	that	you	can	use	as	a	standalone	service	so	that
you	have	to	deal	with	only	a	single	service	to	start	with.	For	example,	the	“Testing	Your	Setup”	section
of	Chapter	2	describes	how	to	work	with	S3.	Because	of	how	S3	works,	you	can	use	it	as	a	standalone
product.	Later,	you	can	use	S3	with	other	products,	but	during	the	initial	learning	stage,	S3	makes	an
excellent	service	to	try.	Think	about	it	this	way:	You	really	need	to	discover	how	to	use	the	tools	that
go	with	the	services,	and	learning	about	the	tools	is	a	lot	easier	when	you	don’t	have	to	juggle	so	many
services.

	Part	2	of	this	book	helps	you	get	started	with	development	tasks.	Make	sure	you	can	interact
with	S3	at	both	the	console	and	with	API	calls	before	you	take	the	next	step.	Using	this	approach
makes	performing	development	tasks	easier	because	you	know	both	the	configuration	process	and
the	methods	used	to	access	a	single	API.

The	next	step	is	to	use	a	standalone	service	that	can	interact	with	a	lot	of	other	services	and	that	you’ll
likely	need	to	know	about	to	perform	tasks	of	any	complexity	level.	For	example,	many	AWS	services
rely	on	EC2,	so	it’s	a	good	idea	to	make	EC2	the	next	step	after	you	work	with	S3	for	a	while.	S3	is
relatively	simple;	EC2	is	a	step	up	in	complexity	and	helps	you	see	how	AWS	tools	work	in	more
detail.	Chapter	6	gets	you	started	with	EC2	and	helps	you	explore	some	of	its	more	interesting
features.

After	you’ve	spent	enough	time	working	with	a	single	application	and	you	understand	how	the	AWS
Console	works	better,	you	can	move	on	to	another	service,	such	as	Lambda	(see	Chapter	10).	When
working	with	Lambda,	you	must	associate	the	function	you	create	with	another	service,	such	as	S3.	At
this	point,	you	begin	seeing	how	services	interact.	Because	you’ve	already	spent	time	obtaining	the
skills	required	to	use	the	console,	you	won’t	find	juggling	multiple	services	quite	as	hard	as	if	you	had
jumped	right	into	using	Lambda.	Each	of	the	steps	you	take	at	the	console	is	followed	by	API	examples
so	that	you	develop	the	required	skills	in	tandem.

	Some	simpler	services,	such	as	Elastic	Beanstalk	(see	Chapter	8),	are	free,	but	they	don’t
appear	in	Table	3-1	(earlier	in	this	chapter)	because	they	include	hidden	costs.	In	this	case,	you
don’t	pay	for	the	service,	but	you	do	pay	for	the	resources	that	the	service	uses.	Elastic	Beanstalk
is	always	free,	but	the	resources	you	store	will	always	cost	you	something,	so	you	need	to	keep
these	kinds	of	issues	in	mind	as	you	work	through	the	discovery	phase	of	your	AWS	planning.
Interestingly	enough,	Elastic	Beanstalk	is	actually	one	of	the	easier	services	to	use	because	you

https://run.qwiklabs.com/payments/pricing
https://run.qwiklab.com/searches/lab?keywords=introduction

upload	your	application	directly	from	the	Integrated	Development	Environment	(IDE),	such	as
Visual	Studio	or	Eclipse,	used	to	build	the	application.	As	a	developer,	you	need	to	be	aware	of
when	updates	occur	and	how	they	affect	your	AWS	setup.

Considering	the	eventual	need	for	paid	services
At	some	point,	you	need	to	consider	the	fact	that	you’ll	have	to	pay	for	the	services	you	need	to	use
AWS	effectively.	Yes,	you	can	perform	a	considerable	amount	of	careful	testing	before	payment
becomes	necessary,	but	eventually	you’ll	have	to	pay	for	something.	This	means	planning	for	the
services	that	you	must	pay	for	in	advance	so	that	you	don’t	suddenly	find	yourself	buried	in	debt	during
the	discovery	phase	of	your	AWS	adventure.	Refer	to	Table	3-1,	earlier	in	the	chapter,	to	see	which
services	expire	after	twelve	months.

	Amazon	has	a	tendency	not	to	tell	you	about	any	service	costs;	those	costs	just	suddenly
appear	on	your	credit	card	statement.	The	following	steps	help	prevent	that	scenario	from
happening:

1.	 Choose	My	Account     My	Billing	Dashboard	and	log	in	to	the	system	if	necessary.
You	see	the	Billing	&	Cost	Management	Dashboard,	shown	in	Figure	3-2.	(My	personal
information	is	blocked	out	of	the	figure,	but	you’ll	see	your	personal	information.)

2.	 Click	Preferences	on	the	left	side	of	the	browser	window.
You	see	a	list	of	billing	information	preferences,	as	shown	in	Figure	3-3.

3.	 Select	Receive	Billing	Alerts	and	then	click	Save	Preferences.
You	see	a	message	stating	that	AWS	saved	your	preferences.

4.	 Click	Manage	Billing	Alerts.
Halfway	down	the	page,	you	see	the	Alarm	Summary	section,	shown	in	Figure	3-4.

5.	 Choose	Alarms\Billing	on	the	left	side	of	the	display.
You	see	the	Billing	Alarms	page,	shown	in	Figure	3-5.	Note	the	third	paragraph,	which	tells	you
the	number	of	free	alarms	and	email	notifications	you	receive	each	month.	It’s	possible,	though	not
likely,	that	you	could	get	an	alarm	billing	for	the	courtesy	of	a	notification	about	getting	billed	for
another	service.

6.	 Click	Create	Alarm.
You	see	the	Create	Alarm	dialog	box,	shown	in	Figure	3-6.	Use	the	fields	in	this	dialog	box	to
determine	the	level	at	which	you	get	informed	about	charges	and	the	email	address	used	to	inform
you.

7.	 Enter	an	amount	in	the	Exceed	field.
Entering	a	value	of	0.01	ensures	that	you	get	alerts	whenever	Amazon	adds	a	charge	to	your
account.	(You	know	about	the	charge	after	Amazon	adds	it,	but	knowing	about	the	charge	lets	you
make	changes	so	that	you	don’t	keep	accumulating	additional	charges.)

8.	 Type	an	email	address	in	the	Send	a	Notification	To	field.

	The	default	display	uses	an	email	address.	Click	the	Show	Advanced	option	to	obtain
other	notification	options.	For	example,	you	can	create	a	notification	list,	rather	than	send	the	alarm
to	just	one	person.

9.	 Click	Create	Alarm.
In	most	cases,	you	see	the	Confirm	New	Email	Address	dialog	box,	shown	in	Figure	3-7.	The
alarm	isn’t	active	until	you	confirm	the	email	address,	but	you	don’t	have	to	do	so	immediately.	If
you	don’t	confirm	the	email	address	in	72	hours,	Amazon	cancels	the	alarm.	During	the	testing
phase	for	this	book,	the	notification	didn’t	appear	immediately,	so	you	need	to	be	patient.
When	you	do	confirm	the	email	address,	you	see	a	page	stating	that	the	subscription	is	confirmed.	It
also	provides	you	with	the	topic	number	for	the	subscription,	and	you	see	a	link	for	unsubscribing
to	the	notification	when	necessary.
After	the	email	is	confirmed,	the	dialog	box	shown	in	Figure	3-7	changes	to	show	the	change	in
status.	You	see	a	message	that	AWS	is	waiting	for	the	confirmation	of	0	new	email	addresses.

10.	 Click	View	Alarm.
Amazon	begins	notifying	you	whenever	it	charges	your	credit	card	for	any	amount	exceeding	the
threshold	you	set.	To	verify	that	the	alarm	is	set,	choose	Alarms\OK.	You	should	see	the	alarm	with
a	blank	Config	Status	field	(showing	that	you	confirmed	the	alarm).

FIGURE	3-2:	The	Billing	Management	Console	lets	you	manage	settings	for	your	AWS	account.

FIGURE	3-3:	Configure	your	billing	preferences	to	ensure	that	Amazon	talks	to	you	about	costs.

FIGURE	3-4:	Create	an	alarm	to	tell	you	about	any	charges.

FIGURE	3-5:	Choose	a	metric	to	monitor.

FIGURE	3-6:	Provide	the	information	needed	to	create	the	alarm.

FIGURE	3-7:	Confirm	the	email	address	you	want	to	use.

	You	must	explicitly	close	your	account	when	you	finish	using	it.	To	close	your	account,	choose
My	Account     Account	Settings.	Log	in	to	the	system,	if	necessary.	At	the	bottom	of	the	first
page	you	see	is	a	Close	Account	section.	Click	Close	Account	if	you’re	certain	that	you’re	done
using	AWS.	The	same	page	has	a	Cancel	Services	section,	in	which	you	can	cancel	services	you
no	longer	need.	This	is	a	good	option	to	use	if	you	come	to	the	end	of	the	12-month	free-usage
period	and	decide	you	want	to	continue	working	with	services	that	don’t	have	an	expiration	date.

Matching	AWS	Services	to	Your	Application
Application	development	requires	long-term	planning.	Even	though	you	deliver	a	product	in
increasingly	shorter	intervals,	the	goal	is	to	create	an	application	that	is	flexible	enough	and	reliable
enough	to	deal	with	organizational	needs	long	term.	With	this	in	mind,	the	following	sections	discuss
some	of	the	criteria	you	need	to	consider	when	matching	AWS	services	to	your	application.

Working	with	services	during	the	free	period
Now	that	you	understand	what	the	services	do,	you	need	to	start	making	choices	about	which	services
to	try.	Remember	that	you	have	only	12	months	in	which	to	make	decisions	about	which	services	to	use
in	your	business.	Twelve	months	may	seem	like	a	lot	of	time,	but	you’ll	find	that	it	evaporates	before
your	eyes	as	you	try	to	juggle	your	day-to-day	responsibilities,	meetings,	and	other	needs.	In	short,
making	a	good	decision	on	what	to	try	during	the	limited	time	you	have	is	essential.	You	may	ultimately
decide	that	AWS	won’t	meet	your	needs	at	all	(as	unlikely	as	that	might	seem,	given	all	that	AWS	has

to	offer).

	Focusing	on	the	important	issues	during	the	trial	period	is	the	key	to	making	AWS	work	for
you.	When	thinking	about	AWS,	you	must	consider	these	issues:

Cost:	Determine	whether	AWS	will	perform	the	task	for	less	money.
Speed:	Decide	whether	the	speed	penalty	of	using	the	cloud	outweighs	the	benefits.
Reliability:	Ascertain	the	risk	of	using	the	cloud	versus	keeping	the	task	in	house.	(The	cloud	may
actually	prove	more	reliable.)
Security:	Define	the	security	requirements	for	your	application	and	then	decide	whether	the	risk	of
using	the	cloud	is	acceptable.
Privacy:	Specify	the	application’s	privacy	requirements	(especially	the	legal	ones).	Enduring	a
privacy	breach	when	the	data	is	housed	on	someone	else’s	system	can	prove	hard	to	manage	and
cause	permanent	damage	to	a	company’s	reputation.
Flexibility:	Consider	whether	the	use	of	a	cloud	service	will	reduce	flexibility	to	the	point	at
which	the	application	becomes	unmanageable.	In	most	cases,	relying	on	the	cloud	reduces
flexibility	because	the	host	reserves	some	configuration	opportunities	for	in-house	use	only.

After	you	determine	that	using	AWS	poses	acceptable	risks	and	provides	benefits	to	offset	any
negatives,	you	need	to	determine	precisely	which	services	to	use.	You	may	find	that	you	can’t	support
some	services	because	of	legal	or	speed	requirements,	even	if	you	have	a	cost	incentive	for	using
those	services.	Work	through	the	services	one	at	a	time	before	you	begin	experimenting;	doing	so	will
save	time	that	you	can	use	to	better	test	the	services	that	will	meet	your	needs.

Interacting	with	services	after	the	free	period
The	free	period	will	end	at	some	point.	During	the	free	period,	you	experiment	with	applications	and
could	possibly	deploy	simple	applications.	However,	after	you’re	past	this	point,	you	need	to	consider
how	to	continue	interacting	with	AWS	(or	whether	to	try	something	else).	The	following	list	explores
interaction	needs	from	a	variety	of	perspectives:

Redundancy:	A	huge	problem	with	the	cloud	is	that	no	one	seems	to	realize	that	the	cloud	can	fail.
A	recent	news	story	serves	to	illustrate	the	point:
http://www.computerworld.com/article/3179761/cloud-computing/lessons-learn-

from-the-recent-aws-s3-outage.html.	The	S3	service	was	out	for	a	number	of	hours	in	the
US-EAST-1	region.	The	problem	with	this	outage	is	that	it	didn’t	affect	just	S3	—	it	affected	many
other	services,	such	as	Dockerhub.	In	fact,	the	outage	affected	a	huge	swath	of	the	Internet.	If	an
outage	like	this	can	happen	once,	it	can	happen	multiple	times,	and	you	need	to	plan	for	it	by
providing	multiple	data	sources,	some	of	which	may	not	rely	on	the	cloud	at	all.
Compromises:	Every	move	comes	with	compromises	of	some	sort.	You	may	not	feel	as	though	you
make	compromises	at	first,	but	as	the	application	grows	into	the	various	services,	compromises
begin	to	appear.	During	the	application	development	stage,	you	need	to	determine	what	levels	of
services	you	require	to	ensure	that	the	application	continues	to	work	as	expected.	Otherwise,	you

http://www.computerworld.com/article/3179761/cloud-computing/lessons-learn-from-the-recent-aws-s3-outage.html

may	get	past	the	free	period,	have	a	lot	invested	in	AWS,	and	only	then	figure	out	that	users	won’t
ever	be	happy	with	the	compromises	you	need	to	make.
Multiple	provider	options:	AWS	and	other	online	services	often	provide	support	for	options	that
work	across	cloud	providers.	For	example,	you	can	support	Docker	apps	across	Amazon,	Google,
and	Microsoft	cloud	services.	Consequently,	using	Docker	means	that	you	could	have	a	plan	B	in
place	that	doesn’t	require	you	to	jump	through	hoops	when	one	of	your	cloud	services	has	a	failure.

Considering	AWS	Security	Issues
The	most	secure	computer	in	the	world	has	no	inputs	whatsoever.	Of	course,	this	super-secure
computer	also	has	no	real-world	purpose	because	computers	without	inputs	are	useless.	An
individual-use	computer,	one	without	connections	to	any	other	computer,	is	the	next	most	secure	type.
A	computer	whose	connections	exist	only	within	a	workgroup	comes	in	next,	and	so	on.	The	least
secure	computer	is	the	one	with	outside	connections.	To	use	AWS,	you	must	risk	the	security	of	your
computer	in	a	major	way.	Developers	can	quickly	drive	themselves	crazy	trying	to	keep	these
interconnected	computers	safe,	but	that’s	part	of	the	job	description.	The	following	sections	present
some	security	issues	that	are	specific	to	AWS.

	A	single	section	of	a	book	can’t	give	you	a	complete	security	picture	regarding	the	use	of	web
services.	In	addition	to	the	recommendations	in	the	following	sections,	you	must	also	follow	best
practices	in	securing	the	computer	systems,	the	data	they	contain,	your	local	network,	and	any
third-party	products	you	use.	In	addition,	you	must	consider	user	training	and	the	fact	that	users
undoubtedly	forget	everything	you	tell	them	the	second	they	leave	the	classroom,	so	diligent
oversight	is	required.	In	short,	the	following	sections	present	a	small	part	of	a	much	larger
security	picture.

Getting	the	Amazon	view	of	security
Given	that	even	the	best	efforts	on	the	part	of	any	vendor	will	likely	provide	only	moderate	security,
the	vendor	should	maintain	a	proactive	stance	on	security.	Although	Amazon	spends	a	good	deal	of
time	trying	to	track	and	fix	known	security	issues	with	its	APIs,	it	also	realizes	that	some
vulnerabilities	are	likely	to	escape	notice,	which	is	where	you	come	into	play.	Amazon	has	a	stated
policy	of	encouraging	your	input	on	any	vulnerabilities	you	find,	as	described	at
https://aws.amazon.com/security/vulnerability-reporting/.

	Be	sure	to	read	Amazon’s	evaluation	process.	The	process	leaves	room	for	Amazon	to	pass
the	blame	for	an	issue	onto	a	third	party,	or	do	nothing	at	all.	Even	though	Amazon	is	proactive,
you	need	to	realize	that	you	may	still	find	vulnerabilities	that	Amazon	does	nothing	to	fix.	As	a
result,	security	for	AWS	will	always	prove	less	than	perfect,	which	means	you	also	need	to
maintain	a	strong,	proactive	security	stance	and	not	depend	on	Amazon	to	do	it	all.	The	most
important	thing	you	can	do	when	working	with	a	cloud	service	vendor	such	as	Amazon	is	to
continue	monitoring	your	own	systems	for	any	sign	of	unexpected	activity.

https://aws.amazon.com/security/vulnerability-reporting/

Getting	the	expert	view	of	security
As	you	work	through	your	plan	for	using	AWS	to	support	your	organization’s	IT	needs,	you	need	to
read	more	than	the	Amazon	view	of	issues	such	as	security.	Expecting	Amazon	to	tell	you	about	every
potential	security	issue	isn’t	unreasonable	—	it’s	just	that	Amazon	requires	proof	before	it	deals	with
an	issue.	To	get	the	full	security	story,	you	must	rely	on	third-party	experts,	which	means	that	you	have
to	spend	time	locating	this	information	online.	(A	visit	to	my	blog	at
http://blog.johnmuellerbooks.com	will	help	in	this	regard	because	I	provide	updates	about
issues,	such	as	security,	that	relate	to	topics	in	my	books).

A	recent	story	serves	to	illustrate	that	Amazon	is	less	than	forthcoming	about	every	security	issue	(see
http://www.bankinfosecurity.com/crypto-keys-stolen-from-amazon-cloud-a-8581/op-

1).	In	this	case,	white-hat	hackers	(security	testers)	have	managed	to	hack	into	a	third	party’s	EC2
instance	from	another	instance.	After	gaining	access	to	the	third-party	instance,	the	researchers	were
able	to	steal	the	security	keys	for	that	instance.	Amazon	is	unlikely	to	tell	you	about	this	sort	of
research,	so	you	need	discover	it	yourself.

	The	problem	with	many	of	these	stories	is	that	the	trade	press	tends	to	sensationalize	them,
making	them	appear	worse	than	they	really	are.	You	need	to	balance	what	you	know	about	your
organization’s	setup,	what	Amazon	has	actually	reported	about	known	security	issues,	and	what
the	trade	press	has	published	about	suspected	security	issues	when	determining	the	security	risks
of	using	AWS	as	your	cloud	solution.	As	part	of	your	planning	process,	you	also	need	to	consider
what	other	cloud	vendors	provide	in	the	way	of	security.	The	bottom	line	is	that	using	the	cloud
will	never	be	as	secure	as	keeping	your	IT	in	house	because	more	connections	always	spell	more
opportunities	for	someone	to	hack	your	setup.

Discovering	the	reality	of	Amazon	security
The	previous	two	sections	discuss	what	Amazon	is	willing	to	admit	when	it	comes	to	security	and
what	researchers	are	trying	to	convince	you	is	the	actual	state	of	security	for	AWS.	These	two
opposing	views	are	critical	to	your	planning	process,	but	you	also	need	to	consider	real-world
experiences	as	part	of	the	mix.	The	security	researchers	at	Worcester	Polytechnic	Institute	created	a
condition	under	which	AWS	could	fail.	However,	it	hasn’t	actually	failed	in	this	way	in	the	real	world.
The	way	in	which	AWS	has	actually	failed	is	with	its	backup	solutions.

The	story	at	http://arstechnica.com/security/2014/06/aws-console-breach-leads-to-
demise-of-service-with-proven-backup-plan/	tells	of	a	company	that	is	no	longer	operational.
It	failed	when	someone	compromised	its	EC2	instance.	This	isn’t	a	contrived	experiment;	it	actually
happened,	and	the	hackers	involved	did	real	damage.	So	this	is	the	sort	of	story	to	give	greater
credence	to	when	you	plan	your	use	of	AWS.

Another	story	(see	http://gizmodo.com/security-hell-private-medical-data-of-over-1-5-
million-1731548110)	relates	how	unexpected	data	dumps	on	AWS	made	third-party	information
available.	In	this	case,	the	data	included	personal	information	garnered	from	police	injury	reports,
drug	tests,	detailed	doctor	visit	notes,	and	social	security	numbers.	Given	the	implications	of	this	data
breach,	the	organizations	involved	could	be	liable	for	both	criminal	and	civil	charges.	When	working

http://blog.johnmuellerbooks.com
http://www.bankinfosecurity.com/crypto-keys-stolen-from-amazon-cloud-a-8581/op-1
http://arstechnica.com/security/2014/06/aws-console-breach-leads-to-demise-of-service-with-proven-backup-plan/
http://gizmodo.com/security-hell-private-medical-data-of-over-1-5-million-1731548110

with	AWS,	you	must	temper	the	need	to	save	money	now	with	the	need	to	spend	more	money	later
defending	yourself	against	a	lawsuit.

Employing	AWS	security	best	practices
Amazon	provides	you	with	a	set	of	security	best	practices,	and	it’s	a	good	idea	for	you	to	read	the
associated	white	paper	as	part	of	your	security-planning	process.	The	white	paper	is	at
https://aws.amazon.com/whitepapers/aws-security-best-practices/.	The	information	you
get	will	help	you	understand	how	to	configure	your	setup	to	maximize	security	from	the	Amazon
perspective,	but	as	the	previous	sections	show,	even	a	great	configuration	may	not	be	enough	to	protect
your	data.	Yes,	you	should	ensure	that	your	setup	follows	Amazon’s	best	practices,	but	you	also	need
to	have	plans	in	place	for	the	inevitable	data	breach.	This	statement	may	seem	negative,	but	when	it
comes	to	security,	you	must	always	assume	the	worst-case	scenario	and	prepare	strategies	for	handling
it.

Using	the	IAM	Policy	Simulator	to	check	access
Later	chapters	in	the	book	will	introduce	you	to	a	wealth	of	tools	you	can	use	as	a	developer	to	reduce
your	risk	when	working	with	AWS.	(Accessing	most	of	these	tools	will	require	that	you	log	into	your
AWS	account.)	However,	one	of	the	more	interesting	tools	you	need	to	know	about	now	is	the	IAM
Policy	Simulator	(https://policysim.aws.amazon.com),	which	can	tell	you	about	the	rights	that	a
user,	group,	or	role	has	to	AWS	resources.	Knowing	these	rights	can	help	you	create	better
applications	as	well	as	lock	down	security	so	that	users	can	rely	on	your	applications	to	work,	but
within	a	safe	environment.	Figure	3-8	shows	the	initial	IAM	Policy	Simulator	display.

FIGURE	3-8:	Use	the	IAM	Policy	Simulator	to	discover	how	AWS	security	works.

To	use	this	simulator,	select	a	user,	group,	or	role	in	the	left	pane.	You	can	select	one	or	more	of	the
policies	for	that	user,	group,	or	role	and	even	see	the	JavaScript	Object	Notation	(JSON)	code	for	that
policy.	For	example,	the	AdministratorAccess	policy	looks	like	this:

{

				"Version":	"2012-10-17",

				"Statement":	[

								{

												"Effect":	"Allow",

												"Action":	"*",

												"Resource":	"*"

								}

]

}

Essentially,	this	policy	states	that	the	user	is	allowed	to	perform	any	action	using	any	resource.	The

https://aws.amazon.com/whitepapers/aws-security-best-practices/
https://policysim.aws.amazon.com

Effect	field	can	contain	Allow	or	Deny	to	allow	or	deny	an	action.	The	Action	field	contains	an
asterisk	(*)	to	show	that	all	the	actions	come	into	play.	Finally,	the	Resource	field	contains	*	to	show
that	this	policy	affects	every	AWS	resource.	As	the	book	progresses,	you	see	a	lot	more	JSON	code,
so	don’t	worry	too	much	about	the	particulars	now.

To	run	a	simulation	against	a	particular	user,	group,	role,	or	policy,	you	need	to	choose	a	service,	such
as	Amazon	Elastic	File	System.	You	can	then	select	the	actions	you	want	to	check	or	click	Select	All	to
select	all	the	actions	associated	with	the	service.	Click	Run	Simulation	to	complete	the	test.	Figure	3-9
shows	the	results	of	running	a	simulation	against	the	AdministratorAccess	policy	for	every	action	of
the	Amazon	Elastic	File	System.

FIGURE	3-9:	Administrators	naturally	have	full	access	to	every	resource.

Part	2
Starting	the	Development	Process

IN	THIS	PART	…
Communicate	with	AWS.

Execute	commands	at	the	Command	Line	Interface	(CLI).

Develop	with	Python.

Use	browser-based	methods.

Install	and	configure	EC2.

Chapter	4
Considering	AWS	Communication

Strategies
IN	THIS	CHAPTER

	Understanding	how	you	can	communicate	with	AWS
	Using	REST	to	communicate

Communication	is	an	essential	part	of	application	development.	In	fact,	it	has	been	an	essential	part	of
application	development	from	the	earliest	days	of	computers.	The	use	of	client/server	technology
began	in	1964	with	OS/360	in	which	a	remote	job	entry	represented	a	request	and	the	response	was
the	output	from	the	job.	Today,	communication	takes	place	in	all	sorts	of	ways,	and	you	need	to	know
how	to	communicate	with	AWS	to	achieve	results	that	your	application	can	use	to	perform	useful
work.	This	chapter	begins	by	looking	at	the	major	communication	standards	as	they	apply	to	AWS.	You
could	easily	fill	a	book	or	two	with	computer	communication	strategies	in	other	environments.

AWS	relies	heavily	on	three	communication	strategies:	REpresentational	State	Transfer	(REST),
eXtensible	Markup	Language	(XML),	and	JavaScript	Object	Notation	(JSON).	In	fact,	you	can	see	a
short	example	of	JSON	used	in	the	“Using	the	IAM	Policy	Simulator	to	check	access”	section	of
Chapter	3	with	regard	to	security	policies.	You	find	these	strategies	used	in	the	examples	throughout
the	book.	This	chapter	provides	an	overview	of	these	three	strategies	in	a	way	that	helps	prepare	you
to	use	them	with	the	book’s	examples.

	This	isn’t	a	programming	language	book.	The	overviews	give	you	some	essential	information
about	the	three	communication	strategies,	but	you	may	find	that	you	need	additional	information.
Each	of	the	strategy	sections	do	provide	links	to	online	sources	that	you	can	use	to	learn	more	if
you	have	no	experience	using	the	language.	The	remainder	of	the	book	doesn’t	necessarily	assume
that	you	have	a	strong	understanding	of	the	languages	used,	but	you	do	need	a	familiarity	with
them	to	use	the	examples	effectively.

Defining	the	Major	Communication	Standards
To	interact	with	AWS	in	any	meaningful	way,	you	must	communicate	with	it.	Communication	occurs	at
several	levels,	which	include:

Transport:	This	is	the	underlying	layer	that	actually	transfers	the	data	between	parties.
Discovery:	To	interact	with	AWS,	you	need	to	know	which	methods	are	available.	The	discovery
level	allows	you	to	use	a	common	URL	to	request	the	list	of	available	methods	for	a	particular

service	in	either	XML	or	JSON	as	a	list	of	hyperlinks.
Request:	After	you	know	which	methods	are	available,	you	can	make	a	request,	and	AWS
provides	a	response.

You	can	easily	break	communication	into	more	layers,	but	these	layers	represent	the	most	basic	and
essential	breakdown.	Understanding	these	layers	is	enough	to	write	robust	applications	using	AWS.
(As	your	applications	become	larger	and	more	complex,	and	AWS	adds	more	functionality,	you	may
need	to	work	with	additional	layers.)	The	following	sections	describe	each	of	these	layers	noted	in	the
preceding	list.

Transporting	the	data
The	first	communication	concern	you	must	address	is	the	matter	of	transport.	AWS	supports	HTTP	for
nonsecure	requests	and	HTTPS	for	secure	requests	for	some	services,	including	those	in	the	following
list:

Amazon	Associates	Web	Service
Amazon	CloudFront	(HTTPS	is	required	for	the	control	API;	currently	only	HTTP	is	accepted	for
the	request	API)
Amazon	DevPay	(HTTPS	is	required	for	the	License	Service)
Amazon	Elastic	Compute	Cloud
Amazon	Flexible	Payments	Service	(HTTPS	is	required)
Amazon	Fulfillment	Web	Service	(HTTPS	is	required)
Amazon	Mechanical	Turk
Amazon	SimpleDB
Amazon	Simple	Queue	Service
Amazon	Simple	Storage	Service

In	most	cases,	using	Secure	Sockets	Layer	(SSL)	in	the	form	of	HTTPS	requests	produces	the	best
result	because	the	information	remains	secure	over	the	Internet.	If	the	data	you	need	isn’t	confidential
in	nature,	you	can	sometimes	achieve	better	application	speed	using	HTTP	instead.	In	some	cases,	you
must	use	HTTP	because	the	service	doesn’t	support	HTTPS,	so	be	sure	to	check	the	service
documentation	before	you	make	any	assumptions.

	Most	developers	know	about	both	HTTP	and	HTTPS	through	desktop	and	browser	application
development.	However,	what	you	might	not	know	is	that	AWS	also	supports	Message	Queuing
Telemetry	Transport	(MQTT)	(see	the	latest	version	information	at	http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html).	This	publish/subscribe	messaging
transport	protocol	addresses	the	needs	of	constrained	devices,	such	as	those	used	to	perform	the
Internet	of	Things	(IoT)	and	Machine-to-Machine	(M2M)	tasks.	Even	though	this	book	doesn’t
address	MQTT	programming	directly,	you	do	need	to	know	it	exists.	You	can	find	more

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

information	about	MQTT	at	http://mqtt.org/	and	the	AWS	view	of	it	at
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html.
AWS	allows	use	of	MQTT	with	a	number	of	services,	including

Amazon	Simple	Storage	Service
Amazon	DynamoDB
Amazon	Kinesis
AWS	Lambda
Amazon	Simple	Notification	Service
Amazon	Simple	Queue	Service

Obtaining	an	API	method	listing
Before	you	can	do	anything	with	AWS,	you	need	to	know	which	tasks	(accessible	using	methods)	are
available.	The	API	documentation	can	provide	you	with	an	overview	of	what	you	can	do,	but	the
actual	list	of	available	methods	is	flexible	and	varies	by	context.	For	example,	you	may	not	be	able	to
perform	certain	tasks	with	some	services	because	you	lack	a	secure	connection	or	you	haven’t
configured	the	service	to	support	the	desired	task.

One	of	the	reasons	that	you	want	to	use	REST	is	that	it	doesn’t	map	Create,	Read,	Update,	and	Delete
(CRUD)	requests	directly	to	the	HTTP	as	a	protocol	does	(creating	an	unbreakable	contract	that	you
must	modify	every	time	you	need	to	make	a	change).	You	make	a	request	using	a	standard	URL	with	a
GET	request	and	receive	a	list	of	hypermedia	links	to	the	actual	method	calls.	The	article	on
Hypermedia	as	the	Engine	of	Application	State	(HATEOAS)	describes	how	this	process	works	in
more	detail.

	Originally,	REST	relied	on	XML	to	provide	the	list	of	links	to	specific	method	calls,	but	using
Hypermedia	Access	Language	(HAL)	(see	http://stateless.co/hal_specification.html
for	details)	enables	you	to	use	JSON	instead,	which	is	easier	to	understand.	AWS	currently	relies
on	XML	for	any	sort	of	API	query	because	most	developers	seem	to	understand	XML	better.	The
examples	in	this	book	rely	on	XML	because	it’s	the	native	format	for	AWS.	The	article	at
https://docs.aws.amazon.com/apigateway/api-reference/	provides	details	on	the	REST
API.

REST	AS	AN	ARCHITECTURAL	STYLE
You	come	across	many	articles,	white	papers,	books,	and	other	documents	that	try	to	directly	equate	REST	and	SOAP.	The
two	are	different	in	a	number	of	ways,	even	though	there	was	initially	a	lot	of	confusion	about	these	differences.	REST	is	an
architectural	style,	not	a	protocol	like	SOAP.	Because	REST	is	an	architectural	style,	it	isn’t	directly	tied	to	any	particular
transport	protocol,	such	as	HTTP.	You	can	use	REST	with	any	transport	protocol	for	which	there	is	a	standardized	URI
scheme.

Even	though	you	see	many	URI	templates	for	accessing	specific	services	in	AWS	in	this	book,	REST	doesn’t	support
templates.	Roy	Fielding,	the	originator	of	REST,	describes	how	REST	is	supposed	to	be	hypermedia	driven	(go	to
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven).	Of	course,	developers	do	need	some	means	of

http://mqtt.org/
http://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
http://stateless.co/hal_specification.html
https://docs.aws.amazon.com/apigateway/api-reference/
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

putting	code	together	quickly,	so	the	URI	templates	end	up	being	a	shortcut	that	you	can	choose	to	use	instead	of	requesting
API	information	from	AWS	each	time	you	make	a	call.	The	best	way	to	view	the	whole	concept	of	hypermedia	driven	is	to
envision	REST	in	the	context	of	a	browser.	Each	time	you	visit	a	site,	the	browser	grabs	a	list	of	the	current	content,	including
the	hyperlinks,	so	you	know	where	the	site	links	now	—	not	where	it	linked	yesterday.	Consequently,	REST	is	dynamic	and
flexible;	URL	templates	are	static.

This	book	isn’t	about	the	purity	of	an	implementation,	nor	does	it	bog	you	down	with	standards	you	really	don’t	need	to	know
to	use	AWS.	As	a	result,	you	may	see	some	sections	that	treat	REST	more	like	a	Remote	Procedure	Call	(RPC)	than	as
pure	REST.	The	goal	of	this	book	is	to	help	you	use	the	AWS	APIs	to	access	various	services,	which	may	mean	bending
some	definitions	to	meet	the	AWS	approach	to	defining	them.	Even	so,	Amazon	does	attempt	to	use	the	various
technologies	in	the	right	way	using	the	correct	terminology.	The	discussion	at
http://stackoverflow.com/questions/19884295/soap-vs-rest-differences	offers	some	interesting	additional	insights	into
REST	misconceptions.

	At	one	time,	AWS	provided	extensive	support	for	the	Simple	Object	Access	Protocol	(SOAP).
In	fact,	you	can	still	use	SOAP	to	make	requests,	but	only	by	using	HTTPS	(see	articles	such	as
the	one	at	https://aws.amazon.com/articles/1928	for	details).	In	other	cases,	AWS	no
longer	supports	SOAP	at	all	(see	the	article	at
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/using-soap-api.html	as
an	example	of	deprecation	for	the	EC2	service).	Consequently,	even	though	you	can	theoretically
use	SOAP	with	AWS,	this	book	doesn’t	discuss	SOAP	because	REST	is	a	better	option.

Making	a	request
As	you	go	through	the	examples	in	this	book,	you	find	that	requests	and	responses	follow	the	familiar
patterns	used	with	other	web	services.	However,	AWS	is	careful	to	ensure	that	you	know	that	REST	is
merely	the	architecture	and	that	API	requests	add	something	to	REST;	that	is,	they	represent	a	different
layer.	In	many	cases,	you	see	REST/query,	which	refers	to	REST	used	with	an	API	call	of	some	type.

You	must	sign	most	REST	requests	you	make	to	AWS.	The	“Getting	access	keys”	section	of	Chapter	2
tells	how	to	obtain	the	access	keys	you	need	to	sign	your	request.	The	“Working	with	requests	and
responses”	and	“Overcoming	those	really	annoying	signature	issues”	sections	of	this	chapter	tell	how
to	sign	a	request	when	using	REST	to	make	a	request	as	part	of	a	browser	application.	A	signature
contains	more	than	just	the	access	key,	but	you	don’t	need	to	know	the	details	just	yet.	All	you	need	to
know	is	that	you	must	sign	the	request	in	most	cases.

Some	services,	such	as	Simple	Storage	Service	(S3),	allow	anonymous	requests.	To	garner	any
significant	amount	of	information,	however,	you	must	provide	signed	(authenticated)	requests.	Because
anonymous	requests	are	rare,	this	book	doesn’t	cover	them.	However,	the	article	at
http://virtuallyhyper.com/2013/09/make-anonymous-amazon-s3-rest-request/	describes
how	to	use	such	a	request	to	fix	a	security	problem	with	an	S3	bucket.

	When	making	a	request	using	the	CLI	or	an	SDK,	the	environment	signs	your	request	for	you.
Even	though	the	request	is	still	signed,	you	don’t	need	to	worry	about	performing	the	task
manually.	You	can	read	more	about	signing	particulars	at

http://stackoverflow.com/questions/19884295/soap-vs-rest-differences
https://aws.amazon.com/articles/1928
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/using-soap-api.html
http://virtuallyhyper.com/2013/09/make-anonymous-amazon-s3-rest-request/

http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html.

Understanding	How	REST	Works
Before	you	delve	into	the	various	SDKs	that	Amazon	provides,	trying	to	work	with	REST	directly	is	a
useful	exercise	because	you	gain	insight	into	what	the	SDKs	are	doing	under	the	cover.	The	following
sections	don’t	spend	a	lot	of	time	looking	at	REST,	but	they	do	give	you	insight	into	how	REST	works,
along	with	a	good	starting	point	and	methods	of	overcoming	some	problems	inherent	in	the	AWS	REST
interface.	Starting	with	Chapter	5,	you	work	with	other	sorts	of	interfaces,	such	as	CLI	and	the	SDKs,
that	do	a	lot	more	of	the	work	for	you.	Even	so,	going	through	these	following	sections	and	possibly
experimenting	with	different	requests	will	make	a	big	difference	in	getting	later	sections	to	work
easily.

Defining	REST	resources
When	working	with	REST,	you	need	to	know	about	a	few	key	issues.	For	example,	you	need	to	know
about	the	HTTP	methods.	The	tutorial	at	https://www.tutorialspoint.com/restful/	gives	you
the	details,	but	for	the	purposes	of	these	examples,	you	work	with	the	HTTP	GET	method	exclusively.
(You	can	find	a	host	of	REST	tutorials	online	and	should	use	one	that	matches	your	programming
language	of	choice.)

Using	AWS	with	REST	requires	that	you	also	know	a	number	of	things	about	AWS.	For	example,	you
need	to	know	the	regions	with	which	you	want	to	interact.	You	can	find	a	list	of	region	names	at
http://docs.aws.amazon.com/general/latest/gr/rande.html.	The	examples	in	this	section
work	with	S3,	which	uses	the	endpoints	found	at
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region.

An	endpoint,	coupled	with	a	bucket	name,	will	get	you	started,	but	REST	queries	typically	require	a
list	of	arguments	separated	by	ampersands	(&).	To	make	even	the	simplest	REST	query	with	AWS,	you
must	also	know	the	values	for	three	variables:

AWSAccessKeyId:	The	public	key	that	you	obtained	in	Chapter	2.	If	you	don’t	have	an	access	key
yet,	you	must	obtain	one	before	working	through	the	exercises	in	this	chapter.
Expires:	The	time	that	the	request	expires.	It	must	be	an	epoch	time	stamp	value	in	seconds.
Signature:	A	calculated	value	that	includes	a	number	of	arguments.	The	Creating	a	signature
section	of	the	chapter	provides	additional	information	on	this	particular	requirement.

Working	with	requests	and	responses
You	can	find	all	sorts	of	really	complicated-looking	examples	of	how	to	make	a	REST	request	in	the
Amazon	documentation.	After	scratching	your	head	for	a	while,	you	might	be	tempted	to	give	up.
However,	all	that	you	really	need	is	a	simple	example	to	see	what’s	going	on.	This	section	discusses
the	need	to	make	a	request	in	the	simplest	possible	manner.	It	begins	with	a	simple	URL:

https://s3-us-west-2.amazonaws.com/<Bucket	Name>/

?AWSAccessKeyId=<Public	Key>&Expires=<Epoch	Time>

&Signature=<Calculated	Signature>

This	request	contains	the	location	of	the	service,	s3-us-west-2.amazonaws.com,	which	includes	the

http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://www.tutorialspoint.com/restful/
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
https://s3-us-west-2.amazonaws.com/

region.	If	you	use	a	different	region,	you	need	a	different	location.	You	must	also	supply	the	name	of
the	bucket	you	create	in	Chapter	2.	The	book	uses	a	bucket	named	aws4d.test-bucket,	but	because
buckets	must	have	unique	names,	your	bucket	name	will	differ.

The	AWSAccessKeyId	entry	uses	your	public	key,	not	the	private	(secret)	key.	The	public	key	is	the	one
you	requested	in	the	“Getting	access	keys”	section	of	Chapter	2.

The	Expires	entry	requires	a	little	more	explanation.	Of	course,	most	people	have	no	idea	how	many
seconds	have	elapsed	since	the	start	of	the	epoch,	so	you	need	a	tool	to	calculate	this	value.	You	can
find	such	a	tool	at	https://www.epochconverter.com/.	Figure	4-1	shows	sample	output	from	the
tool.

FIGURE	4-1:	The	Epoch	&	Unix	Timestamp	Conversion	Tools	makes	calculating	time	values	easier.

Note	that	you	can	use	Epoch	&	Unix	Timestamp	Conversion	Tools	to	create	future	values,	which	is
what	you	need	for	the	Expires	entry.	The	time	you	provide	to	AWS	must	occur	in	the	future	or	you	get
an	error	stating	that	the	time	has	already	expired,	as	shown	in	Figure	4-2.

https://www.epochconverter.com/

FIGURE	4-2:	Use	the	wrong	time	value	and	you	get	a	request	expired	error	message.

Another	such	site	is	the	Timestamp	Generator	at	http://www.timestampgenerator.com/.	This	site
is	a	better	choice	when	you	need	to	create	the	ISO	8601	time	values	required	by	some	AWS	calls.

The	Signature	provides	the	calculated	signature.	This	particular	calculation	requires	special	care.
The	coding	examples	found	at	http://docs.aws.amazon.com/general/latest/gr/signature-
v4-examples.html	provide	code	snippets	that	you	can	use	as	a	starting	point	for	calculating	the
signature.	However,	they’re	just	coding	snippets.	To	actually	make	the	code	work	with	Java,	for
example,	you	must	import	at	least	two	packages:

import	javax.crypto.Mac;

import	javax.crypto.spec.SecretKeySpec;

	Depending	on	how	you	use	the	signature,	you	might	also	need	to	download	and	install	the
Apache	Commons	Codec	package,	found	at	https://commons.apache.org/proper/commons-
codec/download_codec.cgi.	This	package	provides	access	classes	such	as
org.apache.commons.codec.binary.Base64.	The	point	is,	no	matter	which	language	you	use,
the	code	snippets	that	Amazon	provides	are	only	a	starting	point	for	performing	the	required
calculation.

After	you	get	the	parts	together	for	the	basic	S3	bucket	request,	you	can	plug	the	resulting	URL	into
your	browser.	Figure	4-3	shows	typical	results	for	the	bucket	you	created	in	the	“Testing	Your	Setup”
section	of	Chapter	2.	It	doesn’t	tell	you	much,	but	the	output	demonstrates	that	you	have	indeed	made	a
connection,	provided	a	usable	request,	and	obtained	a	usable	result	in	XML	format.

http://www.timestampgenerator.com/
http://docs.aws.amazon.com/general/latest/gr/signature-v4-examples.html
https://commons.apache.org/proper/commons-codec/download_codec.cgi

FIGURE	4-3:	The	output	from	the	URL	call	should	provide	you	with	information	about	your	S3	bucket.

Overcoming	those	really	annoying	signature	issues
It	would	be	nice	if	everything	worked	precisely	as	planned	when	making	your	REST	call	to	AWS.
However,	a	number	of	issues	can	occur	that	result	in	an	error	message	similar	to	the	one	shown	in
Figure	4-4.	Note	that	the	figure	isn’t	complete.	The	key	values	are	blocked	to	maintain	the	usability	of
the	access	keys.

FIGURE	4-4:	Error	messages	can	take	various	forms.

The	problem	you	see	in	Figure	4-4	can	come	from	various	sources.	The	first	fix	is	to	URL-encode	the
signature	to	ensure	that	special	characters	in	the	URL	string	don’t	confuse	AWS.	A	tool	you	can	use	to
overcome	this	problem	is	the	URL	Decoder/Encoder
(http://meyerweb.com/eric/tools/dencoder/)	shown	in	Figure	4-5.	To	use	this	tool,	just	paste
the	signature	(not	the	entire	URL)	into	the	field	and	click	Encode.	The	resulting	signature	doesn’t
contain	any	special	characters,	but	rather	uses	URL	encoding	to	prevent	problems.

http://meyerweb.com/eric/tools/dencoder/

FIGURE	4-5:	URL-encode	the	signature	to	prevent	problems.

Even	if	you	use	the	Amazon-supplied	code	snippets,	the	signature	calculation	process	can	also	go
wrong.	Look	again	at	Figure	4-4,	at	the	StringToSign	and	StringToSignBytes	elements.	These
elements	tell	you	what	AWS	was	expecting	when	it	checked	the	signature.	Of	course,	it	still	doesn’t
give	you	a	clue	as	to	what	value	you	should	have	provided	for	a	signature.	Fortunately,	the	Amazon
Signature	Tester	(https://aws.amazon.com/code/199)	can	provide	this	information.

You	download	the	Amazon	Signature	Tester	to	your	hard	drive.	What	you	get	is	a	README	file	and
an	HTML	page	that	you	load	into	your	browser.	Figure	4-6	shows	how	the	bottom	of	this	page	appears.
You	want	to	work	at	the	bottom	of	the	page	because	it	contains	two	fields	that	you	need	to	supply:	the
StringToSignBytes	element	value	and	your	secret	key	(which	is	left	blank	in	the	example	figure).

https://aws.amazon.com/code/199

FIGURE	4-6:	The	signature	testing	tool	enables	you	to	validate	your	signature	code.

When	you	click	Get	Signature,	you	see	the	StringToSign	element	value	as	AWS	sees	it,	the	actual
signature,	and	the	URL-encoded	signature.	You	use	the	URL	encoded	signature	with	your	call	to	AWS.
To	validate	this	signature,	simply	replace	the	current	value	in	the	URL	string	with	this	new	value.	If	the
problem	is	in	your	signature	code,	the	call	should	work	as	expected.

	The	reason	you	want	to	recheck	the	StringToSign	element	value	is	that	AWS	may	see	it
differently	than	you	do.	For	example,	notice	that	in	this	case,	there	are	three	newline	characters
between	GET	and	the	Expires	value	of	1490652000.	If	your	signature	calculation	code	doesn’t
take	this	requirement	into	consideration,	the	signature	will	be	wrong.	You	can	find	additional
troubleshooting	aids	at	http://docs.aws.amazon.com/general/latest/gr/signature-v4-
troubleshooting.html.

http://docs.aws.amazon.com/general/latest/gr/signature-v4-troubleshooting.html

Chapter	5
Creating	a	Development	Environment

IN	THIS	CHAPTER
	Deciding	on	which	platform	to	use
	Getting	a	copy	of	Python
	Interacting	with	the	IAM	Console
	Getting	a	copy	of	the	CLI	software
	Modifying	S3	via	CLI,	Node.js,	and	Python

AWS	supports	a	huge	array	of	development	options.	From	a	platform	perspective,	you	can	use	just
about	every	major	operating	system	with	just	about	every	major	programming	language	and	write	your
code	using	just	about	every	major	Integrated	Development	Environment	(IDE).	In	fact,	just	from	a
platform	perspective,	AWS	offers	you	a	dizzying	array	of	choices,	so	you	need	to	choose	carefully.	A
wrong	choice	doesn’t	mean	instant	failure,	but	it	could	mean	a	loss	of	time,	increased	use	of	resources,
and	some	lost	flexibility	as	well.	Consequently,	choosing	the	right	platform	and	installing	it	to	use
AWS	tools	is	important.	This	chapter	can’t	possibly	take	you	through	every	potential	option.	In	fact,	a
single	book	couldn’t	accomplish	the	task.	However,	you	do	get	a	good	overview	of	the	options	so	that
you	can	experiment	on	your	own	and	make	a	good	choice.

Besides	traditional	development,	you	can	also	interact	with	AWS	in	other	ways.	This	chapter	doesn’t
explore	all	the	available	methods,	but	it	does	introduce	you	to	two	methods	that	work	well	for
developers.	The	first	is	the	Command	Line	Interface	(CLI)	where	you	can	experiment	with	AWS
functionality	without	having	to	spend	hours	navigating	the	GUI.	Using	CLI	also	gives	you	a	better	sense
of	how	AWS	performs	tasks	in	the	background,	which	also	makes	writing	code	easy.

The	second	method	is	working	with	Node.js,	which	enables	you	to	interact	with	JavaScript	in	a
consistent	manner.	The	techniques	you	discover	using	Node.js	can	help	you	create	browser-based
applications	with	greater	ease.	Often,	you	can	struggle	to	see	what’s	going	on	with	the
request/response	cycle	using	code	alone	or	working	through	CLI	because	both	environments	can
provide	unwanted	processing.	When	working	with	a	programming	language,	you	use	a	Software
Development	Kit	(SDK)	or	library	that	simultaneously	makes	performing	tasks	significantly	easier
(such	as	signing	requests;	see	the	“Overcoming	those	really	annoying	signature	issues”	section	of
Chapter	4)	but	also	makes	seeing	what	goes	on	harder	because	the	SDKs	tend	to	hide	details.	Using
Node.js	with	JavaScript	can	make	these	details	more	apparent	and	significantly	reduce	your	coding
time	when	you	discover	just	why	some	calls	don’t	quite	work	as	advertised.

The	chapter	ends	with	a	programming	example	in	Python.	Although	you	may	use	a	different
programming	language,	Python	can	make	illustrating	how	AWS	works	easier.	All	three	of	the	examples
(CLI,	browser,	and	Python)	at	the	end	of	the	chapter	focus	on	Simple	Storage	Service	(S3)	so	that	you
can	see	how	these	three	techniques	for	interacting	with	AWS	compare.

Choosing	a	Platform
No	“right”	or	“wrong”	platform	exists	to	use	for	AWS	development;	you	should	use	the	one	that’s	best
for	your	intended	purpose,	given	your	specific	set	of	programming	skills	and	the	requirements	of	the
application.	The	following	sections	discuss	some	of	the	many	options	you	have	in	creating	a
development	environment.	These	sections	also	tell	you	about	the	languages	used	for	the	examples	in
this	book	and	reflect	on	why	I	chose	these	particular	languages.	You	may	choose	other	options	for
other	reasons,	and	your	choices	aren’t	wrong.

Considering	the	AWS-supported	options
To	define	a	platform,	you	must	consider	a	number	of	issues.	The	first	consideration	is	the	operating
system.	When	working	in	the	desktop	environment,	as	most	developers	still	do,	you	have	the	three
basic	options:

Linux
Mac	OS/X
Windows

AWS	provides	support	for	all	three	of	these	operating	systems	in	the	form	of	both	tools	and	SDKs.
Depending	on	the	specific	version	of	Linux	you	use,	you	may	have	to	compile	your	own	tools,	but	the
support	is	still	available.	Windows	and	Mac	users	have	the	comfort	of	knowing	that	AWS	provides
binaries	that	are	easy	to	install	and	use.

Because	both	users	and	developers	have	become	more	mobile	and	demand	to	perform	tasks	anywhere,
using	any	device,	AWS	also	provides	a	level	of	support	for	mobile	devices.	These	options	currently
help	developers	to	work	outside	the	office	using	a	mobile	device.	However,	the	support	you	obtain	in
these	environments	can	appear	limited	when	compared	to	the	desktop	environments.	For	example,	you
might	not	be	able	to	perform	some	tasks	because	of	limits	in	the	device	environment	or	security
concerns.	Even	so,	AWS	provides	access	to	three	major	mobile	operating	system	environments:

AWS	Mobile	SDK	for	Android
AWS	Mobile	SDK	for	iOS
AWS	SDK	for	Unity

Deciding	on	an	operating	system	is	only	the	first	step.	The	second	step	is	to	choose	a	programming
language.	The	languages	supported	often	depend	on	the	service	you	want	to	use.	Some	services,	such
as	S3,	support	a	broader	range	of	languages	because	Amazon	expects	developers	to	use	them	in	a
wider	set	of	circumstances.	However,	the	following	list	shows	the	language	that	AWS	documents	as
being	supported	for	most	services:

Go
Java
JavaScript	and	Node.js
PHP

Python
Ruby
Windows	and	.NET
C++

	You	may	not	see	your	programming	language	of	choice	in	this	list.	Fortunately,	a	third	party
may	offer	the	support	you	need	or	the	AWS	documentation	might	not	be	complete.	When	in	doubt,
look	for	alternative	sources	of	information	for	programming	language	support.	For	example,	the
article	at	https://aws.amazon.com/blogs/big-data/running-r-on-aws/	discusses	how	to
use	R	with	AWS,	even	though	you	don’t	see	R	listed	as	one	of	the	supported	languages.	Given	that
this	is	an	Amazon	blog	and	not	a	third-party	blog,	you	need	to	consider	that	the	AWS
documentation	is	simply	outdated	and	Amazon	will	change	it	later.

This	book	doesn’t	present	you	with	a	preferred	language	for	AWS	development	because	a
recommendation	isn’t	possible	without	knowing	your	specific	business	circumstances.	In	fact,	only	you
can	answer	the	question	of	which	operating	systems,	languages,	and	tools	to	use	for	your	development
project.	However,	you	do	need	to	consider	these	issues	when	making	a	choice:

Characteristics:	The	characteristics	of	the	operating	system,	language,	and	tools	you	use	to	work
with	AWS	determine	the	difficulty	of	creating	applications	that	users	find	helpful.	For	example,
even	though	.NET	languages,	like	C#,	have	a	steep	learning	curve,	they	also	have	a	significant
array	of	enterprise-level	features	and	tools	that	make	large	enterprise	projects	easier.	However,
you	might	find	that	data	analysis	is	much	easier	and	faster	with	Python.	If	strong	multiplatform
support	is	a	must,	you	might	want	to	try	Java	instead.	Developers	who	specialize	in	web
applications	might	want	to	use	JavaScript	with	Node.js.	In	short,	there	is	no	one	perfect	operating
system,	language,	or	toolset	—	just	the	combination	that	works	best	for	you.
Cost:	The	choices	you	make	for	a	platform	also	depend	on	cost.	The	relatively	high	speed	of
today’s	components	has	erased	many	of	the	issues	that	used	to	keep	people	devoted	to	a	particular
combination	based	on	speed	alone.	You	can	create	a	platform	using	open	source	products	that	cost
little	or	nothing	today.
Local	ecosystem:	The	skills	possessed	by	the	developers	in	your	organization	partly	determine
the	platform	you	create.	In	addition,	you	must	consider	local	resources	and	needs.	For	example,	if
your	AWS	application	must	interact	with	Office	applications,	using	a	.NET	language	on	Windows
might	be	your	only	choice,	even	if	another	language	might	actually	do	the	job	with	a	little	less
effort	and	at	a	lower	cost.	Changing	the	local	ecosystem	completely	takes	time,	effort,	and	skills
that	your	organization	might	not	possess.
Problem	domain:	The	goal	of	all	applications	is	to	manipulate	data.	All	languages	and	tools	can
help	you	accomplish	that	task,	but	some	are	decidedly	better	than	others	at	getting	the	job	done.	A
large	part	of	the	process	of	determining	platform	characteristics	is	to	determine	how,	when,	where,
and	why	you	want	to	manipulate	data.	For	example,	R	makes	a	much	better	data	analysis	language
than	C#	does,	but	C#	excels	at	interacting	with	other	applications,	such	as	Office.

https://aws.amazon.com/blogs/big-data/running-r-on-aws/

Using	JavaScript	for	browser	examples
This	book	uses	JavaScript	alone	wherever	possible	for	browser	examples.	The	use	of	JavaScript
makes	it	possible	to	see	precisely	what	you	need	to	do	and	how	you	need	to	do	it	when	creating	web-
based	AWS	applications.	In	addition,	JavaScript	is	easy	to	change	and	instantly	run	again	without	the
inconvenience	of	recompiling	your	application.	It	also	runs	on	just	about	every	platform	out	there,	even
if	you	choose	(as	unwieldy	as	it	might	be)	to	try	to	run	code	on	your	smartphone.

	Because	a	smartphone	or	tablet	isn’t	a	particularly	good	development	environment,	this	book
focuses	on	using	JavaScript	with	browsers	found	on	Windows,	Linux,	and	Mac	systems.	The	code
isn’t	tested	for	the	various	AWS	mobile	platforms,	but	should	still	run	as	shown	in	the	book.	To
use	the	examples,	you	must	have	a	browser	capable	of	running	HTML5	and	CSS3	code,	along
with	the	latest	version	of	JavaScript.

Some	examples	will	require	the	use	of	Node.js.	The	Node.js	library	is	simply	a	set	of	tools	that
provides	a	runtime	environment	for	JavaScript	applications.	The	only	purpose	of	using	Node.js	in	this
book	is	to	reduce	example	complexity	and	make	the	steps	required	to	interact	with	AWS	clearer.

Using	Python	for	local	examples
Python	is	a	good	choice	for	experimenting	with	AWS	because	you	get	nearly	instant	feedback	on	the
coding	you	perform	with	it,	plus	the	language	has	only	a	small	learning	curve.	In	addition,	as	with
JavaScript,	Python	is	free,	open	source,	and	runs	on	every	platform	this	book	supports	without	any	sort
of	code	modification.	Other	languages	also	work	for	this	purpose.	For	example,	Java	also	runs	on
every	platform,	but	you	must	use	a	compiler	to	work	with	it,	and	some	developers	have	security
concerns	about	working	with	Java.

	This	book	uses	the	Continuum	Analytics	Anaconda	Python	setup	because	it	provides	a
notebook	environment	in	which	to	run	code.	The	notebook	actually	runs	in	a	browser,	so	it’s
extremely	flexible	and	doesn’t	require	you	to	install	a	fancy	Integrated	Development	Environment
(IDE)	to	become	productive.	The	Jupyter	Notebook	environment	also	supplies	a	place	to	display
graphics	and	enables	comprehensive	commenting	in	an	easily	printed	(report)	format.	You	find
the	installation	and	basic	usage	instructions	for	working	with	Continuum	Analytics	Anaconda	and
Jupyter	Notebook	in	“Obtaining	and	Installing	Python,”	the	next	section	in	this	chapter.	However,
you	can	also	use	pure	Python	and	its	tools	to	work	with	the	code	in	this	book.	It	won’t	be	quite	as
convenient,	but	some	people	may	prefer	the	ultimate	in	interactivity	that	the	pure	Python
environment	provides.

Obtaining	and	Installing	Python
Before	you	can	use	Python	for	the	examples	in	this	book,	you	need	a	copy	installed	on	your	system.
Even	though	you	can	find	a	number	of	Python	distributions	online,	this	book	uses	Continuum	Analytics
Anaconda	version	4.3.1	because	it’s	easy	to	use	and	provides	a	great	working	environment.	The

following	sections	help	you	obtain,	install,	and	configure	Anaconda	for	use	with	the	examples	in	this
book.

CHOOSING	A	PYTHON	VERSION
This	book	uses	the	3.6	version	of	Python	for	all	the	examples.	The	reason	for	this	choice	is	that	Python	3.6	provides	access
to	a	modern	set	of	libraries	that	work	well	with	AWS.	You	can	also	obtain	a	2.7	version	of	Python.	The	libraries	with	this
version	aren’t	compatible	with	Python	3.6.	In	addition,	Python	2.7	has	some	coding	differences	from	the	3.6	version.
Developers	continue	to	update	Python	2.7	because	it	offers	access	to	libraries	that	data	scientists	commonly	need	for	their
work.	Unfortunately,	you	can’t	use	Python	2.7	with	the	examples	in	this	book	without	modifying	the	code	and	changing	the
library	selections.	This	book	doesn’t	support	Python	2.7.

Obtaining	Continuum	Analytics	Anaconda	version	4.3.1
The	basic	Anaconda	package	is	a	free	download	that	you	obtain	at
https://store.continuum.io/cshop/anaconda/.	Simply	click	Download	Anaconda	to	obtain
access	to	the	free	product.	You	do	need	to	provide	an	email	address	to	get	a	copy	of	Anaconda.	After
giving	your	email	address,	you	go	to	another	page,	where	you	can	choose	your	platform	and	the
installer	for	that	platform.	Anaconda	supports	the	following	platforms:

Windows	32-bit	and	64-bit	(the	installer	may	offer	you	only	the	64-bit	or	32-bit	version,
depending	on	which	version	of	Windows	it	detects)
Linux	32-bit	and	64-bit
Mac	OS	X	64-bit

Because	library	support	for	Python	3.6	has	become	better	than	previous	3.x	versions,	you	see	both
Python	3.x	and	2.x	equally	supported	on	the	Continuum	Analytics	site.	This	book	uses	Python	3.6
because	the	library	support	is	now	substantial	and	stable	enough	to	support	all	the	programming
examples,	and	because	Python	3.x	represents	the	future	direction	of	Python.

	The	Miniconda	installer	can	potentially	save	time	by	limiting	the	number	of	features	you
install.	However,	trying	to	figure	out	precisely	which	packages	you	do	need	is	an	error-prone	and
time-consuming	process.	In	general,	you	want	to	perform	a	full	installation	to	ensure	that	you	have
everything	needed	for	your	projects.	Even	a	full	install	doesn’t	require	much	time	or	effort	to
download	and	install	on	most	systems.

The	free	product	is	all	you	need	for	this	book.	However,	when	you	look	on	the	site,	you	see	that	many
other	add-on	products	are	available.	These	products	can	help	you	create	robust	applications.	For
example,	when	you	add	Accelerate	to	the	mix,	you	obtain	the	capability	to	perform	multicore	and
GPU-enabled	operations.	The	use	of	these	add-on	products	is	outside	the	scope	of	this	book,	but	the
Anaconda	site	provides	details	on	using	them.

Installing	Python	on	Linux
You	use	the	command	line	to	install	Anaconda	on	Linux	—	you’re	given	no	graphical	installation
option.	Before	you	can	perform	the	install,	you	must	download	a	copy	of	the	Linux	software	from	the

https://store.continuum.io/cshop/anaconda/

Continuum	Analytics	site.	You	can	find	the	required	download	information	in	the	“Obtaining
Continuum	Analytics	Anaconda”	section,	the	preceding	section	in	this	chapter.	The	following
procedure	should	work	fine	on	any	Linux	system,	whether	you	use	the	32-bit	or	64-bit	version	of
Anaconda:

1.	 Open	a	copy	of	Terminal.
The	Terminal	window	appears.

2.	 Change	directories	to	the	downloaded	copy	of	Anaconda	on	your	system.
The	name	of	this	file	varies,	but	normally	it	appears	as	Anaconda3-4.3.1-Linux-x86.sh	for	32-
bit	systems	and	Anaconda3-4.3.1-Linux-x86_64.sh	for	64-bit	systems.	The	version	number	is
embedded	as	part	of	the	filename.	In	this	case,	the	filename	refers	to	version	4.3.1,	which	is	the
version	used	for	this	book.	If	you	use	some	other	version,	you	may	experience	problems	with	the
source	code	and	need	to	make	adjustments	when	working	with	it.

3.	 Type	bash	Anaconda3-4.3.1-Linux-x86.sh	(for	the	32-bit	version)	or	bash	Anaconda3-4.3.1-
Linux-x86_64.sh	(for	the	64-bit	version)	and	press	Enter.
An	installation	wizard	starts	that	asks	you	to	accept	the	licensing	terms	for	using	Anaconda.

4.	 Read	the	licensing	agreement	and	accept	the	terms	using	the	method	required	for	your
version	of	Linux.
The	wizard	asks	you	to	provide	an	installation	location	for	Anaconda.	The	book	assumes	that	you
use	the	default	location	of	~/anaconda.	If	you	choose	some	other	location,	you	may	have	to	modify
some	procedures	later	in	the	book	to	work	with	your	setup.

5.	 Provide	an	installation	location	(if	necessary)	and	press	Enter	(or	click	Next).
The	application	extraction	process	begins.	After	the	extraction	is	complete,	you	see	a	completion
message.

6.	 Add	the	installation	path	to	your	PATH	statement	using	the	method	required	for	your	version
of	Linux.
You’re	ready	to	begin	using	Anaconda.

Installing	Python	on	MacOS
The	Mac	OS	X	installation	comes	in	only	one	form:	64-bit.	Before	you	can	perform	the	install,	you
must	download	a	copy	of	the	Mac	software	from	the	Continuum	Analytics	site.	You	can	find	the
required	download	information	in	the	“Obtaining	Continuum	Analytics	Anaconda”	section,	earlier	in
this	chapter.

The	installation	files	come	in	two	forms.	The	first	depends	on	a	graphical	installer;	the	second	relies
on	the	command	line.	The	command-line	version	works	much	like	the	Linux	version	described	in
“Installing	Python	on	Linux,”	the	preceding	section	of	this	chapter.	The	following	steps	help	you	install
Anaconda	64-bit	on	a	Mac	system	using	the	graphical	installer:

1.	 Locate	the	downloaded	copy	of	Anaconda	on	your	system.
The	name	of	this	file	varies,	but	normally	it	appears	as	Anaconda3-4.3.1-MacOSX-x86_64.pkg.
The	version	number	is	embedded	as	part	of	the	filename.	In	this	case,	the	filename	refers	to	version

4.3.1,	which	is	the	version	used	for	this	book.	If	you	use	some	other	version,	you	may	experience
problems	with	the	source	code	and	need	to	make	adjustments	when	working	with	it.

2.	 Double-click	the	installation	file.
An	introduction	dialog	box	appears.

3.	 Click	Continue.
The	wizard	asks	whether	you	want	to	review	the	Read	Me	materials.	You	can	read	these	materials
later.	For	now,	you	can	safely	skip	the	information.

4.	 Click	Continue.
The	wizard	displays	a	licensing	agreement.	Be	sure	to	read	through	the	licensing	agreement	so	that
you	know	the	terms	of	usage.

5.	 Click	I	Agree	if	you	agree	to	the	licensing	agreement.
The	wizard	asks	you	to	provide	a	destination	for	the	installation.	The	destination	controls	whether
the	installation	is	for	an	individual	user	or	a	group.

	You	may	see	an	error	message	stating	that	you	can’t	install	Anaconda	on	the	system.	The
error	message	occurs	because	of	a	bug	in	the	installer	and	has	nothing	to	do	with	your	system.	To
get	rid	of	the	error	message,	choose	the	Install	Only	for	Me	option.	You	can’t	install	Anaconda	for
a	group	of	users	on	a	Mac	system.

6.	 Click	Continue.
The	installer	displays	a	dialog	box	containing	options	for	changing	the	installation	type.	Click
Change	Install	Location	if	you	want	to	modify	where	Anaconda	is	installed	on	your	system.	(The
book	assumes	that	you	use	the	default	path	of	~/anaconda.)	Click	Customize	if	you	want	to	modify
how	the	installer	works.	For	example,	you	can	choose	not	to	add	Anaconda	to	your	PATH	statement.
However,	the	book	assumes	that	you	have	chosen	the	default	install	options,	and	no	good	reason
exists	to	change	them	unless	you	have	another	copy	of	Python	3.6	installed	somewhere	else.

7.	 Click	Install.
The	installation	begins.	A	progress	bar	tells	you	how	the	installation	process	is	progressing.	When
the	installation	is	complete,	you	see	a	completion	dialog	box.

8.	 Click	Continue.
You’re	ready	to	begin	using	Anaconda.

Installing	Python	on	Windows
Anaconda	comes	with	a	graphical	installation	application	for	Windows,	so	getting	a	good	install
means	using	a	wizard,	as	you	would	for	any	other	installation.	Of	course,	you	need	a	copy	of	the
installation	file	before	you	begin,	and	you	can	find	the	required	download	information	in	the
“Obtaining	Continuum	Analytics	Anaconda”	section,	earlier	in	this	chapter.	The	following	procedure
should	work	fine	on	any	Windows	system,	whether	you	use	the	32-bit	or	the	64-bit	version	of
Anaconda:

1.	 Locate	the	downloaded	copy	of	Anaconda	on	your	system.
The	name	of	this	file	varies,	but	normally	it	appears	as	Anaconda3-4.3.1-Windows-x86.exe	for
32-bit	systems	and	Anaconda3-4.3.1-Windows-x86_64.exe	for	64-bit	systems.	The	version
number	is	embedded	as	part	of	the	filename.	In	this	case,	the	filename	refers	to	version	4.3.1,
which	is	the	version	used	for	this	book.	If	you	use	some	other	version,	you	may	experience
problems	with	the	source	code	and	need	to	make	adjustments	when	working	with	it.

2.	 Double-click	the	installation	file.
(Note:	You	may	see	an	Open	File	—	Security	Warning	dialog	box	that	asks	whether	you	want	to
run	this	file.	Click	Run	if	you	see	this	dialog	box	pop	up.)	You	see	an	Anaconda	4.3.1	Setup	dialog
box	similar	to	the	one	shown	in	Figure	5-1.	The	exact	dialog	box	that	you	see	depends	on	which
version	of	the	Anaconda	installation	program	you	download.	If	you	have	a	64-bit	operating	system,
using	the	64-bit	version	of	Anaconda	is	always	best	so	that	you	obtain	the	best	possible
performance.	This	first	dialog	box	tells	you	whether	you	have	the	64-bit	version	of	the	product.

3.	 Click	Next.
The	wizard	displays	a	licensing	agreement.	Be	sure	to	read	through	the	licensing	agreement	so	that
you	know	the	terms	of	usage.

4.	 Click	I	Agree	if	you	agree	to	the	licensing	agreement.
You’re	asked	what	sort	of	installation	type	to	perform,	as	shown	in	Figure	5-2.	In	most	cases,	you
want	to	install	the	product	just	for	yourself.	The	exception	is	if	you	have	multiple	people	using
your	system	and	they	all	need	access	to	Anaconda.

5.	 Choose	one	of	the	installation	types	and	then	click	Next.
The	wizard	asks	where	to	install	Anaconda	on	disk,	as	shown	in	Figure	5-3.	The	book	assumes	that
you	use	the	default	location.	If	you	choose	some	other	location,	you	may	have	to	modify	some
procedures	later	in	the	book	to	work	with	your	setup.

6.	 Choose	an	installation	location	(if	necessary)	and	then	click	Next.
You	see	the	Advanced	Installation	Options,	shown	in	Figure	5-4.	These	options	are	selected	by
default,	and	no	good	reason	exists	to	change	them	in	most	cases.	You	might	need	to	change	them	if
Anaconda	won’t	provide	your	default	Python	3.6	setup.	However,	the	book	assumes	that	you’ve	set
up	Anaconda	using	the	default	options.

7.	 Change	the	advanced	installation	options	(if	necessary)	and	then	click	Install.
You	see	an	Installing	dialog	box	with	a	progress	bar.	The	installation	process	can	take	a	few
minutes,	so	get	yourself	a	cup	of	coffee	and	read	the	comics	for	a	while.	When	the	installation
process	is	over,	you	see	a	Next	button	enabled.

8.	 Click	Next.
The	wizard	tells	you	that	the	installation	is	complete.

9.	 Click	Finish.
You’re	ready	to	begin	using	Anaconda.

FIGURE	5-1:	The	setup	process	begins	by	telling	you	whether	you	have	the	64-bit	version.

FIGURE	5-2:	Tell	the	wizard	how	to	install	Anaconda	on	your	system.

FIGURE	5-3:	Specify	an	installation	location.

FIGURE	5-4:	Configure	the	advanced	installation	options.

A	WORD	ABOUT	THE	SCREENSHOTS
As	you	work	your	way	through	the	book,	you	use	an	IDE	of	your	choice	to	open	the	Python	and	Jupyter	Notebook	files
containing	the	book’s	source	code.	Every	screenshot	that	contains	IDE-specific	information	relies	on	Anaconda	because
Anaconda	runs	on	all	three	platforms	supported	by	the	book.	The	use	of	Anaconda	doesn’t	imply	that	it’s	the	best	IDE	or	that
the	author	is	making	any	sort	of	recommendation	for	it;	Anaconda	simply	works	well	as	a	demonstration	product.

When	you	work	with	Anaconda,	the	name	of	the	graphical	(GUI)	environment,	Jupyter	Notebook,	is	precisely	the	same
across	all	three	platforms,	and	you	won’t	even	see	any	significant	difference	in	the	presentation.	(Jupyter	Notebook	is	an
evolution	of	IPython,	so	you	may	see	online	resources	refer	to	IPython	Notebook.)	The	differences	that	you	do	see	are	minor,
and	you	should	ignore	them	as	you	work	through	the	book.	With	this	in	mind,	the	book	does	rely	heavily	on	Windows	7
screenshots.	When	working	on	a	Linux,	Mac	OS	X,	or	other	Windows	version	platform,	you	should	expect	to	see	some

differences	in	presentation,	but	these	differences	shouldn’t	reduce	your	ability	to	work	with	the	examples.

Using	Jupyter	Notebook
To	make	working	with	the	relatively	complex	code	in	this	book	easier,	you	use	Jupyter	Notebook.	This
interface	lets	you	easily	create	Python	notebook	files	that	can	contain	any	number	of	examples,	each	of
which	can	run	individually.	The	program	runs	in	your	browser,	so	which	platform	you	use	for
development	doesn’t	matter;	as	long	as	it	has	a	browser,	you	should	be	okay.

COMMAND	AND	MENU	SEQUENCES
The	command	and	menu	sequences	used	in	this	chapter	are	for	Anaconda	4.3.1,	which	differ	slightly	from	older	versions	of
Anaconda	and	will	likely	vary	slightly	from	those	used	in	newer	versions	of	Anaconda	as	well.	If	you	aren’t	using	Anaconda
4.3.1,	you	may	need	to	modify	the	steps	slightly	to	make	them	work	properly.	For	example,	older	versions	of	Anaconda	don’t
rely	on	tokens	for	security	in	the	same	way	that	Anaconda	4.3.1	does.	They	also	lack	the	Logout	button	in	the	upper-right
corner	of	the	display.

Starting	Jupyter	Notebook
Most	platforms	provide	an	icon	to	access	Jupyter	Notebook.	Just	click	this	icon	to	access	Jupyter
Notebook.	For	example,	on	a	Windows	system,	you	choose	Start   All	Programs   Anaconda	3   
Jupyter	Notebook.

	When	working	with	the	latest	version	of	Anaconda,	you	see	a	message	in	the	Jupyter	Notebook
Console	that	includes	the	URL	you	should	use	when	connecting	for	the	first	time.	The	URL	takes
the	form	http://localhost:8888/?token=long_series_of_numbers_and_letters	(where
the	token	value	is	unique	to	your	system).	However,	your	browser	generally	opens	for	you
automatically,	so	you	won’t	have	to	enter	this	URL	by	hand.

	If	you	log	out	of	Jupyter	Notebook,	you	need	the	token	value	to	log	back	in.	Make	sure	to
record	the	token	somewhere	safe	in	case	you	need	it	later.	However,	you	generally	won’t	need	to
supply	a	token	when	starting	Anaconda	locally.	The	local	setup,	which	is	the	only	one	used	in	this
book,	automatically	supplies	the	required	token.

Figure	5-5	shows	how	the	interface	looks	when	viewed	in	a	Firefox	browser.	The	precise	appearance
on	your	system	depends	on	the	browser	you	use	and	the	kind	of	platform	you	have	installed.

FIGURE	5-5:	Jupyter	Notebook	provides	an	easy	method	to	create	AWS	examples.

If	you	have	a	platform	that	doesn’t	offer	easy	access	through	an	icon,	you	can	use	these	steps	to	access
Jupyter	Notebook:

1.	 Open	a	Command	Prompt	or	Terminal	Window	on	your	system.
The	window	opens	so	that	you	can	type	commands.

2.	 Change	directories	to	the	\Anaconda3\Scripts	directory	on	your	machine.
Most	systems	let	you	use	the	CD	command	for	this	task.

3.	 Type	python	jupyter-notebook-script.py	and	press	Enter.
The	Jupyter	Notebook	page	opens	in	your	browser.	In	general,	you	don’t	need	to	supply	a	token
when	starting	Jupyter	Notebook	using	this	approach.

Stopping	the	Jupyter	Notebook	server
Make	sure	that	you	log	out	when	you	finish	a	session	to	ensure	that	your	data	is	saved.	Simply	click	the
Logout	in	the	upper-right	corner	of	the	window	(as	shown	in	Figure	5-5).	If	you	later	choose	to	log
back	in,	you	need	the	token	provided	by	Anaconda	during	the	initial	login.

No	matter	how	you	start	Jupyter	Notebook	(or	just	Notebook,	as	it	appears	in	the	remainder	of	the
book),	the	system	generally	opens	a	command	prompt	or	terminal	window	to	host	Jupyter	Notebook.
This	window	contains	a	server	that	makes	the	application	work.	After	you	close	the	browser	window
when	a	session	is	complete,	select	the	server	window	and	press	Ctrl+C	or	Ctrl+Break	to	stop	the

server.

Defining	the	code	repository
The	code	you	create	and	use	in	this	book	will	reside	in	a	repository	on	your	hard	drive.	Think	of	a
repository	as	a	kind	of	filing	cabinet	where	you	put	your	code.	Notebook	opens	a	drawer,	takes	out	the
folder,	and	shows	the	code	to	you.	You	can	modify	it,	run	individual	examples	within	the	folder,	add
new	examples,	and	simply	interact	with	your	code	in	a	natural	manner.	The	following	sections	get	you
started	with	Notebook	so	that	you	can	see	how	this	whole	repository	concept	works.

Defining	the	book’s	folder
It	pays	to	organize	your	files	so	that	you	can	access	them	easier	later.	This	book	keeps	its	files	in	the
AWS4D4D	(AWS	For	Developers	For	Dummies)	folder.	Use	these	steps	within	Notebook	to	create	a
new	folder:

1.	 (Optional)	Navigate	to	the	Documents	folder	on	your	system.
Notebook	generally	displays	the	Documents	folder	in	the	initial	list	that	it	presents	to	you.	If	your
platform	uses	a	different	default	user	folder	to	store	documents,	navigate	to	that	folder	instead.	The
purpose	of	storing	the	examples	in	your	documents	folder	is	to	avoid	potential	security	issues	when
running	the	code	later.

2.	 Choose	New   Folder.
Notebook	creates	a	new	folder	named	Untitled	Folder,	as	shown	in	Figure	5-6.	The	file	appears	in
alphanumeric	order,	so	you	may	not	initially	see	it.	You	must	scroll	down	to	the	correct	location.

3.	 Select	the	box	next	to	the	Untitled	Folder	entry.
4.	 Click	Rename	at	the	top	of	the	page.

You	see	a	Rename	Directory	dialog	box	like	the	one	shown	in	Figure	5-7.
5.	 Type	AWS4D4D	and	click	OK.

Notebook	changes	the	name	of	the	folder	for	you.
6.	 Click	the	new	AWS4D4D	entry	in	the	list.

Notebook	changes	the	location	to	the	AWS4D4D	folder	in	which	you	perform	tasks	related	to	the
exercises	in	this	book.

FIGURE	5-6:	New	folders	appear	with	a	name	of	Untitled	Folder.

FIGURE	5-7:	Rename	the	folder	so	that	you	remember	the	kinds	of	entries	it	contains.

Creating	a	new	notebook
Every	new	notebook	is	like	a	file	folder.	You	can	place	individual	examples	within	the	file	folder,	just
as	you	would	sheets	of	paper	into	a	physical	file	folder.	Each	example	appears	in	a	cell.	You	can	put
other	sorts	of	things	in	the	file	folder,	too,	but	you	see	how	these	things	work	as	the	book	progresses.
Use	these	steps	to	create	a	new	notebook:

1.	 Click	New   Python	3.
A	new	tab	opens	in	the	browser	with	the	new	notebook,	as	shown	in	Figure	5-8.	Notice	that	the
notebook	contains	a	cell	and	that	Notebook	has	highlighted	the	cell	so	that	you	can	begin	typing
code	in	it.	The	title	of	the	notebook	is	Untitled	right	now.	That’s	not	a	particularly	helpful	title,	so
you	need	to	change	it.

2.	 Click	Untitled	on	the	page.
Notebook	asks	what	you	want	to	use	as	a	new	name,	as	shown	in	Figure	5-9.

3.	 Type	AWS4D4D;	05;	Sample	and	press	Enter.
The	new	name	tells	you	that	this	is	a	file	for	AWS	For	Developers	For	Dummies,	Chapter	5,
Sample.ipynb	(the	software	automatically	adds	the	correct	file	extension	for	you	as	needed).	Using
this	naming	convention	lets	you	easily	differentiate	these	files	from	other	files	in	your	repository.

FIGURE	5-8:	A	notebook	contains	cells	that	you	use	to	hold	code.

FIGURE	5-9:	Provide	a	new	name	for	your	notebook.

Of	course,	the	Sample	notebook	doesn’t	contain	anything	just	yet.	Place	the	cursor	in	the	cell,	type
print(‘Python	is	really	cool!'),	and	then	click	the	Run	button	(the	button	with	the	right-pointing	arrow
on	the	toolbar).	You	see	the	output	shown	in	Figure	5-10.	The	output	is	part	of	the	same	cell	as	the
code	(the	code	resides	in	a	square	box	and	the	output	resides	outside	that	square	box,	but	both	are
within	the	cell).	However,	Notebook	visually	separates	the	output	from	the	code	so	that	you	can	tell
them	apart.	Notebook	automatically	creates	a	new	cell	for	you.	(The	code	for	this	section	appears	in
the	AWS4D4D;	05;	Sample.ipynb	file	that	is	part	of	the	downloadable	source	for	this	chapter	as
described	in	the	Introduction.)

FIGURE	5-10:	Notebook	uses	cells	to	store	your	code.

When	you	finish	working	with	a	notebook,	shutting	it	down	is	important.	To	close	a	notebook,	choose
File   Close	and	Halt.	You	return	to	the	Home	page,	where	you	can	see	that	the	notebook	you	just
created	is	added	to	the	list,	as	shown	in	Figure	5-11.

FIGURE	5-11	Any	notebooks	you	create	appear	in	the	repository	list.

Exporting	a	notebook
Creating	notebooks	and	keeping	them	all	to	yourself	isn’t	much	fun.	At	some	point,	you	want	to	share
them	with	other	people.	To	perform	this	task,	you	must	export	your	notebook	from	the	repository	to	a
file.	You	can	then	send	the	file	to	someone	else,	who	will	import	it	into	his	or	her	repository.

The	previous	section	shows	how	to	create	a	notebook	named	AWS4D4D;	05;	Sample.	You	can	open
this	notebook	by	clicking	its	entry	in	the	repository	list.	The	file	reopens	so	that	you	can	see	your	code
again.	To	export	this	code,	choose	File   Download	As   Notebook	(.ipynb).	What	you	see	next

depends	on	your	browser,	but	you	generally	see	some	sort	of	dialog	box	for	saving	the	notebook	as	a
file.	Use	the	same	method	for	saving	the	IPython	Notebook	file	as	you	use	for	any	other	file	you	save
using	your	browser.

Removing	a	notebook
Sometimes	notebooks	get	outdated	or	you	simply	don’t	need	to	work	with	them	any	longer.	Rather	than
allow	your	repository	to	get	clogged	with	files	you	don’t	need,	you	can	remove	these	unwanted
notebooks	from	the	list.	Use	these	steps	to	remove	the	file:

1.	 Select	the	box	next	to	the	AWS4D4D;	05;	Sample.ipynb	entry.
2.	 Click	the	trash	can	icon	(Delete)	at	the	top	of	the	page.

You	see	a	Delete	notebook	warning	message	like	the	one	shown	in	Figure	5-12.
3.	 Click	Delete.

The	notebook	file	gets	removed	from	the	list.

FIGURE	5-12:	Notebook	warns	you	before	removing	any	files	from	the	repository.

Importing	a	notebook
To	use	the	source	code	from	this	book,	you	must	import	the	downloaded	files	into	your	repository.	The
source	code	comes	in	an	archive	file	that	you	extract	to	a	location	on	your	hard	drive.	The	archive
contains	a	list	of	.ipynb	(IPython	Notebook)	files	containing	the	source	code	for	this	book	(see	the
Introduction	for	details	on	downloading	the	source	code).	The	following	steps	tell	how	to	import	these
files	into	your	repository:

1.	 Click	Upload	at	the	top	of	the	page.
What	you	see	depends	on	your	browser.	In	most	cases,	you	see	some	type	of	File	Upload	dialog
box	that	provides	access	to	the	files	on	your	hard	drive.

2.	 Navigate	to	the	directory	containing	the	files	that	you	want	to	import	into	Notebook.
3.	 Highlight	one	or	more	files	to	import	and	click	the	Open	(or	other,	similar)	button	to	begin	the

upload	process.

You	see	the	file	added	to	an	upload	list,	as	shown	in	Figure	5-13.	The	file	isn’t	part	of	the
repository	yet	—	you’ve	simply	selected	it	for	upload.

	When	you	export	a	file,	Notebook	converts	any	special	characters	to	a	form	that	your
system	will	accept	with	greater	ease.	The	semicolons	appear	as	%3B,	and	spaces	appear	as	a	+
(plus	sign).	You	must	change	these	characters	to	their	Notebook	form	to	see	the	title	as	you	expect
it.	Figure	5-13	shows	the	filename	with	this	change	in	place.

4.	 Click	Upload.
Notebook	places	the	file	in	the	repository	so	that	you	can	begin	using	it.

FIGURE	5-13:	The	files	that	you	want	to	add	to	the	repository	appear	as	part	of	an	upload	list	consisting	of	one	or	more
filenames.

Working	with	the	Identity	and	Access
Management	Console

Part	of	the	reason	you	need	to	work	with	the	Identity	and	Access	Management	(IAM)	Console	is	to
define	your	specific	access	to	AWS	and	obtain	your	access	keys	as	you	did	in	the	“Getting	access
keys”	section	of	Chapter	2.	However,	that’s	really	just	the	tip	of	the	iceberg.	In	addition	to	creating
access	for	yourself,	you	must	often	configure	and	test	different	levels	of	access	to	simulate	the	users
your	application	supports.	This	means	considering	various	security	issues	that	you	might	not	have	to
consider	on	your	local	network.	The	following	sections	help	you	through	some	of	the	details	of
working	with	IAM	with	regard	to	developing	AWS	applications.	These	sections	won’t	make	you	a
full-fledged	administrator,	but	you	gain	the	tools	needed	to	develop	robust	applications.

Configuring	root	access

Even	though	the	setup	used	for	this	book	is	experimental,	you	still	don’t	want	third	parties	to	have
access	to	it.	In	addition,	if	you	maintain	slack	security	for	your	test	setup,	any	experiments	you	perform
won’t	show	real-world	security	conditions.	The	“Getting	access	keys”	section	of	Chapter	2	shows
how	to	obtain	your	developer	keys	after	creating	a	basic	account.	When	you	navigate	to	the	Identity
and	Access	Management	(IAM)	Console	at	https://console.aws.amazon.com/iam/,	you	see	there
are	still	three	steps	to	complete	to	configure	basic	security	for	your	system,	as	shown	in	Figure	5-14.
When	you	complete	these	steps	using	the	techniques	found	in	the	following	sections,	you	have	a	secure
test	platform	that	supports	a	single	user,	which	is	you.	Obviously,	you	can	add	test	users	as	needed
later.

FIGURE	5-14:	Complete	the	security	configuration	for	your	test	setup.

Deleting	the	root	access	keys
Removing	your	root	access	keys	makes	it	less	likely	that	someone	will	gain	access	to	your	AWS	setup
and	lock	you	out	of	it	or	corrupt	your	setup.	The	Amazon	documentation	provides	a	host	of	other
reasons	for	this	action,	but	from	a	developer	perspective,	when	working	on	a	test	setup,	these	are	the
two	main	concerns.	Using	accounts	with	specific	levels	of	access	is	important	in	maintaining	security.
The	following	steps	help	you	delete	your	root	access	keys.

1.	 Click	Delete	Your	Root	Access	Keys	in	the	IAM	Management	Console.

https://console.aws.amazon.com/iam/

You	see	a	Manage	Security	Credentials	button.
2.	 Click	Manage	Security	Credentials.

Amazon	tells	you	about	the	security	credentials	page	for	your	AWS	account.
3.	 Click	Continue	to	Security	Credentials.

You	see	the	Your	Security	Credentials	page,	shown	in	Figure	5-15.
4.	 Click	Access	Keys.

You	see	a	listing	of	access	keys	for	your	root	access	account.	These	keys	are	different	from	your
user	access	account	keys,	which	you	save	to	a	file	in	Chapter	2.

	Note	the	Create	New	Access	Key	button	in	this	area.	You	can	always	create	a	new	root
access	account	key	later	if	needed	for	a	specific	purpose.	All	you	are	doing	now	is	removing	the
access	so	that	no	one	can	gain	access	to	your	root	access	account	using	programmatic	means.

5.	 Click	Delete	in	the	Actions	column.
You	see	a	warning	message	stating	that	you	can’t	recreate	the	key	later.

6.	 Click	Yes.
Amazon	deletes	the	access	key.

FIGURE	5-15:	The	Your	Security	Credentials	page	contains	security	information	for	root	access	to	your	account.

Using	Multi-Factor	Authentication	(MFA)
MFA	can	be	a	complex	issue	with	Amazon	because	you	have	a	number	of	choices	available	to	you.
The	summary	presented	at	https://aws.amazon.com/iam/details/mfa/	provides	details	on	each

https://aws.amazon.com/iam/details/mfa/

of	the	options.	Only	three	of	these	options	work	with	your	root	access	account,	and	only	one	of	them	is
free	at	that	level:

Virtual	MFA	Device	(free):	You	use	a	smartphone	or	tablet	device	that	adheres	to	the	Time-Based
One-Time	Password	(TOTP)	algorithm	standard	(https://tools.ietf.org/html/rfc6238).

Hardware	Key	Fob	MFA	Device	(paid):	You	obtain	a	special	key	fob	from	Amazon	to	identify
yourself	using	a	technique	that’s	similar	to	that	used	by	many	financial	institutions.
Hardware	Display	Card	MFA	Device	(paid):	You	obtain	a	special	credit	card-like	device	from
Amazon	to	identify	yourself.

Each	of	these	options	has	a	different	setup.	You	begin	by	clicking	Activate	MFA	on	Your	Root	Account
in	the	display	shown	in	Figure	5-14.	Click	Manage	MFA	next.	You	see	a	dialog	box	in	which	you
choose	the	kind	of	MFA	you	want	to	use;	then	you	follow	the	custom	prompts	to	perform	the	required
configuration.

Creating	a	password	policy
A	password	policy	helps	ensure	that	anyone	using	the	AWS	services	must	use	a	password	that	hackers
are	less	likely	to	break.	Normally,	administrators	worry	about	password	policies	as	part	of	the	AWS
configuration	process.	However,	as	a	developer,	you	also	need	to	be	aware	of	these	policies	so	that
you	can	verify	that	they	work	with	your	application	as	part	of	the	testing	process.	Unless	you	test
against	actual	policies,	your	application	may	experience	login	problems	or	other	security	issues	that
you	never	envisioned	during	the	testing	process.

	Always	assume	that	someone	can	break	your	security	given	enough	time,	resources,	and	desire
to	do	so.	Strong	passwords,	good	security	settings,	reduced	permissions,	and	so	on	all	help	give
hackers	a	good	reason	to	go	bother	someone	else,	but	they	never	create	a	high	enough	barrier	that
a	determined	hacker	won’t	break	into	your	system.	Consequently,	in	addition	to	all	the	best
practices	discussed	in	this	chapter,	you	must	employ	monitoring	to	discover	potential	break-ins.
In	addition,	conducting	security	audits	and	relying	on	third-party	security	firms	are	helpful	to
verify	that	the	policies	you	have	in	place	actually	do	work.

As	part	of	creating	your	developer	setup,	configure	the	password	policy	to	match	the	one	used	by	your
organization	or	the	password	policy	you	intend	to	use	when	the	application	goes	live.	The	following
steps	tell	you	how	to	perform	this	task:

1.	 Click	Apply	an	IAM	Password	Policy	in	the	IAM	Management	Console.
You	see	the	Manage	Password	Policy	button.

2.	 Click	Manage	Password	Policy.
You	see	the	Password	Policy	page,	shown	in	Figure	5-16.

3.	 Check	the	entries	that	match	the	password	policy	for	your	organization.

https://tools.ietf.org/html/rfc6238

	The	black	circle	with	a	lowercase	i	icon	provides	you	with	additional	information	about
each	policy.	To	see	the	information,	simply	hover	your	mouse	over	the	icon.

4.	 Click	Apply	Password	Policy.
You	see	a	message	stating	that	AWS	successfully	updated	the	password	policy.

FIGURE	5-16:	Define	a	password	policy	that	matches	the	one	used	by	your	organization.

Signing	into	a	user	account
Look	again	at	Figure	5-14.	Until	now,	you	have	used	the	root	access	login	for	your	account,	which	can
be	a	source	of	potential	security	problems	when	someone	gains	access	to	your	system.	To	overcome
this	issue,	you	need	to	use	the	user	access	login	instead.	To	accomplish	this	task,	you	use	the	link
shown	under	the	IAM	Users	Sign-in	Link	label,	which	is
https://889745118473.signin.aws.amazon.com/console	in	Figure	5-14.	The	user	level	login
URL	for	your	site	will	differ	from	the	one	shown	in	the	figure	because	you	have	a	different	account.
Make	sure	to	log	out	of	the	root	access	page	before	you	log	in	to	the	user	access	page.

The	user	access	login	page	looks	like	the	one	shown	in	Figure	5-17.	However,	the	account	number

https://889745118473.signin.aws.amazon.com/console

shown	on	your	page	differs	from	the	one	shown.	To	log	into	the	user	account,	type	your	username	and
password	in	the	fields	supplied	and	then	click	Sign	In.	The	page	you	see	next	looks	similar	to	the	one
used	for	root	access,	except	that	you	have	access	only	to	services	and	features	specifically	allowed	by
your	user	account.

FIGURE	5-17:	Log	in	to	your	user	account	to	perform	development	tasks.

Installing	the	Command	Line	Interface	Software
CLI	is	an	essential	part	of	working	with	AWS,	especially	for	a	developer.	You	can	use	CLI	to	perform
quick	setups,	determine	whether	specific	calls	worked	as	intended,	obtain	status	information,	and	so
on.	There	isn’t	anything	new	about	CLI.	After	all,	developers	have	used	the	command	prompt	or
terminal	window	on	desktop	systems	to	perform	various	tasks	for	years.	In	fact,	some	developers
create	extensive	batch	file	and	script	libraries	to	perform	common	tasks	in	the	desktop	environment.
Using	CLI	with	AWS	is	more	of	the	same,	despite	the	fact	that	you	use	it	in	a	cloud	environment.
However,	unlike	the	command	prompt	and	terminal	window,	you	don’t	have	CLI	installed	on	your
system	by	default.	With	this	in	mind,	the	following	sections	help	you	get	CLI	installed	and	tested	for
use	with	the	examples	throughout	the	rest	of	the	book.

Getting	started	with	CLI
The	AWS	CLI	software	depends	on	Python.	Consequently,	in	order	to	install	CLI,	you	must	first	install
Python	using	the	techniques	found	in	the	“Obtaining	and	Installing	Python”	section	of	the	chapter.	The
current	version	of	CLI	requires	that	you	have	one	of	the	following:

Python	2.6.5	or	above
Python	3.3	or	above

The	version	of	Python	you	installed	for	this	book	will	work	fine.	Installing	Anaconda	also	installs	the
pip	utility	that	you	use	to	perform	various	Python-specific	tasks	in	the	book.	If	you	choose	not	to	use
Anaconda,	you	may	need	to	install	pip	using	the	instructions	found	at
https://pip.pypa.io/en/stable/installing/.	However,	you	can	check	for	pip	by	typing	pip	--
version	and	pressing	Enter	at	a	command	prompt	or	within	a	terminal	window.	If	pip	is	present,	you
see	the	pip	version	number,	location,	and	Python	version	number.

After	you	know	that	you	have	Python	and	pip	installed,	type	pip	install	--upgrade	awscli	and	press
Enter	to	install	CLI.	The	install	command	tells	pip	to	install	a	package.	The	--upgrade	option	tells
pip	to	upgrade	any	packages	required	to	support	CLI.	The	awscli	keyword	tells	pip	what	to	install,
which	is	the	AWS	CLI.	(Note	that	Amazon	recommends	using	the	--user	option,	which	does	install
AWS	CLI	in	a	different	folder,	but	also	makes	AWS	CLI	harder	to	access	and	use.)

After	you	press	Enter,	pip	displays	a	series	of	messages	telling	you	about	the	installation	process.
When	the	process	completes,	you	return	to	the	command	prompt,	as	shown	in	Figure	5-18.	At	this
point,	CLI	is	ready	for	use.

FIGURE	5-18:	You	see	installation	messages	as	pip	does	its	work.

To	verify	that	your	installation	works,	type	aws	--version	and	press	Enter.	You	see	information	about
AWS	CLI,	as	shown	in	Figure	5-19.	Depending	on	your	setup,	you	may	also	see	a	warning	message
about	a	lack	of	a	file	association	for	the	.py	file	type,	which	you	can	ignore	for	this	book.

https://pip.pypa.io/en/stable/installing/

FIGURE	5-19:	Test	your	AWS	CLI	setup	by	checking	its	version	information.

Obtaining	additional	information	and	help
As	with	AWS,	CLI	is	quite	complex	in	its	abilities.	It	has	to	be,	given	that	you	can	access	every	AWS
service	using	it.	Consequently,	this	chapter	and	those	that	follow	give	you	an	overview	of	what	you	can
do,	rather	than	a	precise	description	of	everything	possible.	It	would	take	a	book,	or	even	two,
devoted	to	that	topic	to	describe	everything	CLI	can	do.

Because	of	CLI’s	complexity,	you	need	to	know	how	to	obtain	help	when	you	need	it	to	perform
specific	tasks.	The	first	place	to	look	is	on	the	AWS	site	at	https://aws.amazon.com/cli/.	This
site	provides	you	with	access	to	tools	such	as	a	CLI	reference	and	access	to	the	community	forum.	The
community	forum	is	especially	important	because	you	can	use	it	to	obtain	answers	to	questions	that	no
one	else	has	thought	to	ask	about	and	those	special	situations	where	it	looks	like	there	is	a	glitch	in
CLI’s	behavior	(and	it	often	turns	out	that	there	really	is	one).	The	AWS	site	also	provides	you	with
usage	examples	and	other	useful	information	for	working	with	CLI.

The	second	place	to	look	is	AWS	itself.	Type	aws	help	at	the	command	line	and	press	Enter.	You	see
the	first	page	of	a	multipage	help	screen,	like	the	one	shown	in	Figure	5-20.	Notice	the	--	More	--
entry	at	the	bottom.	This	entry	tells	you	there	is	more	information	to	see.	Press	the	spacebar	to	see	it.

FIGURE	5-20:	Obtain	assistance	directly	from	the	aws	utility	using	the	help	command.

The	aws	help	command	can	provide	you	with	a	lot	of	information.	For	example,	if	you	want	to	find
out	about	a	specific	service,	add	that	service	name	to	the	end	of	the	command.	To	discover	more	about
S3,	type	aws	help	s3	and	press	Enter.	You	see	a	list	of	additional	S3	command	options.	Say	that	you
want	to	discover	more	about	configuring	S3.	In	this	case,	you	type	aws	help	s3-config	and	press	Enter.
The	S3	overview	help	provides	you	with	this	more	detailed	help	topic,	so	you	can	drill	down	as	you
need	more	information	to	perform	specific	tasks.

Configuring	S3	Using	CLI

https://aws.amazon.com/cli/

After	you	have	CLI	installed	on	your	system	using	the	instructions	found	in	the	previous	section	of	this
chapter,	you	can	begin	using	it	to	perform	useful	tasks.	For	a	developer,	that	means	being	able	to
perform	configuration,	check	status,	and	do	other	sorts	of	low-level	tasks	with	the	various	AWS
services.	The	following	sections	look	at	how	you	can	use	CLI	to	perform	essential	tasks	with	S3.
Going	through	these	exercises	helps	you	better	understand	how	S3	works,	in	addition	to	allowing	you
to	perform	development-required	tasks.

Creating	the	aws	utility	configuration	file
To	use	the	aws	utility	to	perform	tasks	using	AWS	CLI,	you	must	create	a	configuration	file.	The
configuration	file	contains	a	number	of	pieces	of	information,	including	both	your	public	and	secret
keys	(see	the	“Getting	access	keys”	section	of	Chapter	2	for	details).	The	following	steps	help	you
perform	this	configuration	task:

1.	 Open	a	command	prompt	or	terminal	window.
2.	 Type	aws	configure	and	press	Enter.

You	see	a	prompt	asking	for	your	public	key,	as	shown	in	Figure	5-21.	(None	of	the	screenshots	in
this	section	actually	show	the	keys,	which	have	been	blanked	out	for	security	reasons.)

3.	 Type	your	public	key	string	and	press	Enter.
In	most	cases,	you	can	copy	and	paste	your	key	directly	from	the	.csv	file	used	to	store	it.	The
method	you	use	depends	on	your	operating	system.	For	example,	when	working	at	the	Windows
command	prompt,	you	right-click	and	choose	Paste	from	the	context	menu.	You	see	a	prompt	asking
for	your	private	key.

4.	 Type	your	private	(secret)	key	string	and	press	Enter.
You	see	a	prompt	asking	for	the	default	region	used	to	access	data.	The	region	you	provide,	such	as
us-west-2,	should	match	the	region	you	use	when	interacting	with	AWS	from	the	consoles.	A	list
of	regions	appears	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html

The	examples	in	this	book	rely	on	us-west-2;	however,	the	use	of	this	particular	region	won’t
affect	the	results	you	see	when	working	with	a	different	region.

5.	 Type	the	region	information	and	press	Enter.
The	configuration	routine	asks	for	an	output	format.	Choose	one	of	the	following	options	(the	book
relies	on	table	output	for	the	sake	of	clarity;	aws	uses	json	by	default):

json:	The	default	format	outputs	the	data	using	the	JavaScript	Object	Notation	(JSON)
technique,	which	relies	on	name/value	pairs.	An	advantage	of	this	format	is	that	it	works
well	for	direct	input	with	some	languages,	such	as	Python.	You	can	see	a	basic	JSON
tutorial	at	https://www.w3schools.com/js/js_json_intro.asp.

text:	Outputs	the	data	using	simple	text.	The	advantage	of	this	approach	is	that	no
formatting	is	involved,	so	you	can	easily	modify	it	to	meet	any	need.	However,	the	output
can	be	a	little	hard	to	read.
table:	Outputs	the	data	using	table-formatted	text.	The	advantage	of	this	approach	is	that
the	output	is	easily	read	directly	at	the	command	line.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://www.w3schools.com/js/js_json_intro.asp

6.	 Type	the	output	format	and	press	Enter.
You	return	to	the	command	prompt.

FIGURE	5-21:	Provide	the	public	key	that	you	obtained	from	AWS.

	The	configuration	command	creates	two	new	files	for	you.	Both	of	these	files	appear	in	the
.aws	folder	on	your	system.	The	precise	location	depends	on	the	operating	system	you	use.	For
example,	on	a	Windows	system,	you	generally	find	the	files	in	the	C:\Users\<UserName>\.aws
folder.	After	you	complete	this	task,	the	config	file	contains	the	region	you	want	to	use	and	the
output	format.	However,	you	can	add	other	entries	as	needed.	The	credentials	file	contains
your	public	and	private	keys.

Obtaining	S3	information
To	ensure	that	your	aws	utility	works	as	expected,	you	need	to	try	a	test	access	of	AWS.	Type	aws	s3
ls	and	press	Enter.	You	begin	with	the	aws	utility,	followed	by	the	name	of	the	service	you	want	to
access,	which	is	s3.	The	ls	command	lists	the	content	of	an	S3	object.	Because	you	haven’t	provided
a	specific	location	in	S3,	what	you	see	as	output	is	a	listing	of	the	S3	buckets	you’ve	created,	as	shown
in	Figure	5-22.	Note	that	the	output	contains	the	execution	date	and	time.	The	bucket	name	will	match
the	name	you	provided,	rather	than	the	name	shown	in	the	figure.

FIGURE	5-22:	Using	the	ls	command	by	itself	displays	a	list	of	buckets.

You	can	try	uploading	a	file	to	your	bucket.	To	perform	this	task,	you	use	the	copy	or	cp	command.	The
cp	command	requires	that	you	provide	a	source	location	and	a	destination	location.	The	source	and
destination	can	be	a	local	folder	or	S3	bucket.	Although	you	wouldn’t	use	this	technique	to	perform	a

local	copy,	you	can	copy	from	a	local	folder	to	an	S3	bucket,	from	an	S3	bucket	to	a	local	folder,	or
between	S3	buckets.	For	example,	to	copy	a	file	named	colorblk.gif	from	a	local	folder	named	win
to	the	S3	bucket,	you	would	type	something	like	aws	s3	cp	"c:\win\colorblk.gif"
s3://aws4d.test-bucket/colorblk.gif	and	press	Enter.	You	must	provide	a	source	and
destination	that	match	your	setup.	To	ensure	that	the	file	is	actually	uploaded,	you	use	the	ls	command
again,	but	this	time	you	add	the	bucket	name.	Figure	5-23	shows	the	result	of	a	successful	copy	and
listing.

FIGURE	5-23:	Copy	a	file	to	your	bucket	and	then	list	the	bucket	content.

Configuring	S3	Using	Node.js
One	method	for	interacting	with	S3	that	works	essentially	the	same	way	across	all	platforms,	even
mobile	ones,	is	to	rely	on	a	browser.	When	coupled	with	HTML5,	CSS3,	and	JavaScript,	a	browser
provides	a	powerful	method	for	interacting	with	AWS.	Using	best	practices	ensures	that	your	browser
application	remains	secure,	provides	a	robust	and	reliable	application	environment,	and	allows	users
to	perform	required	tasks	anywhere	using	any	device.	Given	that	most	users	expect	this	level	of
flexibility	today,	knowing	how	to	make	a	browser	environment	work	properly	is	important.

	You	actually	have	multiple	ways	to	make	your	browser	interact	with	AWS	using	JavaScript,
and	you	can	find	them	at	https://aws.amazon.com/javascript/.	This	book	uses	the	Node.js
approach	because	it’s	the	easiest,	requires	no	additional	downloads	except	Node.js,	and	presents
how	to	work	with	JavaScript	in	the	clearest	manner.	The	following	sections	get	you	started	using
Node.js	with	S3.

Installing	Node.js
Node.js	is	a	development	environment	and	library	of	routines	and	helps	automate	development	tasks.
Most	web	developers	rely	heavily	on	automation	because	they	simply	don’t	have	time	to	reinvent	the
wheel	with	every	project	(and	no	strong	need	to	do	so;	in	fact,	it’s	counterproductive).	Using	Node.js
not	only	reduces	the	time	and	complexity	of	writing	applications	but	also	makes	interactions	with	them
more	consistent.	It’s	a	lightweight,	efficient	library	based	on	Chrome’s	V8	JavaScript	engine.

	To	get	your	copy	of	Node.js,	navigate	to	the	Node.js	site	at
https://nodejs.org/en/download/	and	download	a	version	that	matches	your	platform.	You
may	find	that	your	setup	works	better	when	the	copy	you	download	also	matches	your	browser.	If

https://aws.amazon.com/javascript/
https://nodejs.org/en/download/

you’re	using	a	32-bit	browser,	get	32-bit	Node.js.	In	addition,	get	a	binary	version	rather	than
source	code	if	at	all	possible	to	reduce	the	amount	of	work	you	need	to	do.

After	you	have	the	file	on	your	machine,	open	the	file	and	follow	the	prompts	presented	by	the	wizard
to	complete	the	installation.	Avoid	installing	Node.js	in	a	path	with	a	space	it	in	—	spaces	tend	to
cause	problems	when	working	in	certain	environments,	so	avoiding	them	works	best.	The	examples	in
this	book	assume	that	you	have	used	an	installation	directory	of	C:\nodejs\.

Configuring	Node.js
Before	you	can	use	Node.js,	you	need	to	configure	it	to	interact	with	AWS.	The	following	steps	get	you
started:

1.	 Open	a	Node.js	Command	Prompt.
A	Node.js	command	prompt	window	appears.	The	Node.js	Command	Prompt	appears	with	the
other	Node.js	icons.	For	example,	when	working	with	Windows,	you	choose	Start   All
Programs   Node.js   Node.js	Command	Prompt.

2.	 Change	directories	to	your	Node.js	directory.
For	example,	if	you	used	the	recommended	installation	folder	for	Windows,	you’d	type	CD
\nodejs	and	press	Enter.

3.	 Type	npm	init	and	press	Enter.
The	Node.js	Package	Manager	(npm)	utility	helps	you	configure	your	Node.js	installation.	The
init	command	takes	you	through	the	process	of	creating	a	package.json	file.	Creating	the
package.json	file	prevents	some	errors	during	the	AWS	library	installation,	but	you	don’t	really
do	anything	with	it	in	this	book.

4.	 Press	Enter	after	each	of	the	questions	presented	by	the	wizard.
Eventually	you	see	a	summary	of	the	entries.	The	npm	utility	will	ask	whether	the	entries	are	OK.

5.	 Type	y	(for	yes)	and	press	Enter.
The	npm	utility	creates	the	package.json	file.

6.	 Type	npm	install	aws-sdk	and	press	Enter.
The	npm	utility	installs	the	AWS	SDK	as	a	package	(essentially	a	kind	of	library).	You	may	see	a
message	stating,	WARN	nodejs@1.0.0	No	repository	field.	It’s	safe	to	ignore	the	error	message.
Node.js	is	now	configured	for	use.

Dealing	with	credentials
As	with	any	other	access	to	your	AWS	account,	you	must	provide	security	credentials	to	make	a	call.
You	may	see	all	sorts	of	convoluted	ways	to	perform	this	task.	However,	the	easiest	way	to	get	the	job
done	is	to	let	CLI	do	it	for	you.	The	steps	in	the	“Creating	the	aws	utility	configuration	file”	section,
earlier	in	this	chapter,	create	required	configuration	files	that	Node.js	can	use	as	well.

Dealing	with	Cross	Origin	Resource	Sharing	(CORS)
Modern	browsers	prevent	you	from	accessing	resources	on	another	domain	within	a	script	because
doing	so	can	cause	significant	security	issues.	A	hacker	could	modify	a	script	to	download	a	virus	or
other	unwanted	content	without	the	user’s	permission	or	knowledge.	However,	given	the	way	in	which

users	interact	with	the	Internet	today,	being	able	to	access	resources,	such	as	files,	from	another
domain	is	not	only	useful,	it’s	required.	Using	CORS	enables	people	to	share	resources	in	a	secure
way.	This	book	doesn’t	detail	precisely	how	this	process	happens,	but	you	can	read	about	it	at
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS.

As	with	any	other	resource	on	another	domain,	you	must	make	your	S3	bucket	available	to	JavaScript
before	you	can	do	anything	with	it.	AWS	doesn’t	enable	CORS	support	by	default	because	Amazon	has
no	way	of	knowing	how	you	want	to	share	resources.	Consequently,	you	must	enable	CORS	support
for	your	S3	bucket	by	writing	a	CORS	configuration,	which,	oddly	enough,	requires	use	of	XML.	The
following	steps	tell	you	how	to	configure	S3	to	enable	CORS:

1.	 Sign	in	to	AWS	using	your	user	account.
2.	 Navigate	to	the	S3	Console	at	https://console.aws.amazon.com/s3.

You	see	the	S3	bucket	created	in	the	“Testing	Your	Setup”	section	of	Chapter	2.	If	not,	you	need	to
recreate	the	bucket,	because	browser-based	operations	are	bucket	specific.

3.	 Click	the	link	for	your	S3	bucket.
AWS	presents	the	bucket	details,	as	shown	in	Figure	5-24.	(The	bucket	details	will	differ	from
those	shown	in	the	figure.)

4.	 Open	the	Permissions	tab.
Note	the	options	for	managing	bucket	security	shown	in	Figure	5-25,	including	CORS
configuration.	Enabling	CORS	does	allow	a	browser	access	to	the	S3	resources,	but	a	user	must
still	authenticate	to	gain	any	privileges,	and	those	privileges	appear	as	part	of	a	bucket	policy.

5.	 Click	CORS	Configuration.
You	see	the	sample	CORS	configuration,	shown	in	Figure	5-26.	Note	that	the	ARN	for	the	bucket
appears	as	part	of	the	information	near	the	top.	The	sample	policy	provides	access	to	everyone
using	the	GET	method,	but	only	for	the	purpose	of	authorization.	Without	any	other	headers	defined,
CORS	is	effectively	disabled.	You	find	a	list	of	common	headers	at
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonRequestHeaders.html.

6.	 Modify	the	sample	CORS	configuration	entry	to	look	like	the	following	code:
<CORSConfiguration>

			<CORSRule>

						<AllowedOrigin>*</AllowedOrigin>

						<AllowedMethod>GET</AllowedMethod>

						<AllowedMethod>POST</AllowedMethod>

						<AllowedMethod>PUT</AllowedMethod>

						<AllowedMethod>DELETE</AllowedMethod>

						<AllowedHeader>*</AllowedHeader>

			</CORSRule>

</CORSConfiguration>

The	changes	allow	the	browser	to	make	REST	calls	to	obtain	information,	upload	new	files,	and
delete	existing	files,	among	other	things,	using	the	GET,	POST,	PUT,	and	DELETE	REST	methods.
However,	before	any	of	this	can	happen,	the	user	must	still	have	permission	to	perform	the	tasks.

7.	 Click	Save.
AWS	enables	CORS	using	the	policy	you	put	in	place.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://console.aws.amazon.com/s3
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonRequestHeaders.html

FIGURE	5-24:	Open	your	bucket	to	enable	CORS	on	it.

FIGURE	5-25:	Bucket	security	relies	on	more	than	just	CORS.

FIGURE	5-26:	The	default	CORS	configuration	doesn’t	provide	any	useful	access.

Making	a	call
After	completing	the	work	required	to	make	Node.js	interact	with	AWS,	you	can	finally	use	it	to	do
something	interesting.	The	following	steps	show	how	to	interact	with	AWS	using	Node.js.	Of	course,
you	use	Node.js	quite	often	as	the	book	progresses.

1.	 Type	var	AWS	=	require('aws-sdk');	and	press	Enter.
Note	the	ending	semicolon	for	the	command.	This	command	loads	the	aws-sdk	library	that	you
installed	in	the	“Configuring	Node.js”	section	of	the	chapter.	If	you	see	an	error,	go	through	the
steps	in	that	section	again	to	ensure	that	you	have	a	good	install.	You	also	need	to	ensure	that	you
have	configured	your	security	credentials	before	proceeding.

2.	 Type	s3	=	new	AWS.S3();	and	press	Enter.
You	can	specify	certain	arguments	for	this	call,	but	accepting	the	defaults	works	best.	This
command	provides	you	with	access	to	the	S3	service	commands.	The	output	from	this	command
shows	all	sorts	of	information	about	the	S3	service	and	your	interaction	with	it.	For	example,	you
find	your	public	access	key	in	the	list	of	items.	You	also	find	information	about	service	settings	and
the	endpoints	used	to	access	it.

3.	 Type	the	following	code,	precisely	as	shown,	pressing	Enter	at	the	end	of	each	line:
s3.listBuckets(function(err,	data)	{

			if	(err)	{

						console.log("Error",	err);

			}	else	{

						console.log("Bucket	List",	data.Buckets);

			}

});

4.	 Press	Enter	an	additional	time.
You	see	a	long	list	of	output	that	details	precisely	how	Node.js	makes	the	call.	For	example,	you
discover	the	handshaking	used	to	create	the	initial	connection.	However,	the	final	two	lines	tell	you
what	you	need	to	know:

Bucket	List	[{	Name:	'aws4d.test-bucket',

		CreationDate:	2017-03-14T14:22:04.000Z	}]

Experimenting	at	the	Node.js	prompt	is	interesting	and	helpful	when	you’re	trying	something	new,	but
it	isn’t	permanent.	You	can	create	a	file	that	contains	all	the	commands	you	just	typed	and	save	it	on
disk.	In	fact,	you	can	find	this	file	as	ListBuckets.js	in	the	downloadable	source	code	for	this
chapter	(the	book’s	Introduction	tells	you	how	to	find	it).	To	run	this	file,	copy	it	to	your	\nodejs
folder,	open	a	command	prompt,	and	then	type	node	ListBuckets	and	press	Enter.	Don’t	include	the
file	extension.	Figure	5-27	shows	sample	output	from	this	command.

FIGURE	5-27:	The	JavaScript	commands	you	create	can	appear	within	a	file.

Configuring	S3	Using	a	Desktop	Application
Even	though	many	people	consider	the	desktop	dead,	it	still	represents	the	most	powerful	and	flexible
method	of	interacting	with	AWS	services.	Using	desktop	applications	also	enable	you	to	create
environments	in	which	local	resources	and	cloud	resources	interact	seamlessly	under	a	level	of
control	that	isn’t	possible	using	other	approaches.	In	addition,	the	desktop	environment	often	provides
the	developer	with	access	to	unique	resources	and	leverages	a	developer’s	full	grasp	of	various
programming	languages.	With	this	in	mind,	this	section	of	the	chapter	demonstrates	how	to	create	an
application	that	interacts	with	S3	using	a	desktop	application	written	using	Python.

Installing	boto
Python	uses	a	library	named	boto	to	interact	with	AWS.	As	with	all	Python	libraries,	it’s	easy	to
install	if	you	have	the	pip	utility	installed.	Anaconda	comes	with	pip,	so	you	shouldn’t	have	to	do
anything	special	to	perform	the	installation.	To	install	boto,	open	a	command	prompt	or	terminal

window,	type	pip	install	boto3	(don’t	type	the	comma),	and	press	Enter.	The	installation	should	go
quickly.	After	a	few	installation	lines,	you	should	see	a	success	message.	You	can	read	more	about
boto	at	https://aws.amazon.com/sdk-for-python/.

Listing	S3	buckets
The	process	for	getting	the	bucket	list	in	Python	is	quite	short.	(You	can	access	this	example	code	in
the	AWS4D4D;	05;	ListBuckets.ipynb	file	for	this	chapter	in	the	downloadable	source,	as
explained	in	the	Introduction.)	First,	you	need	to	access	the	boto	library	using	this	code:

from	boto.s3.connection	import	S3Connection

Now	that	you	have	library	access,	create	a	connection	to	the	library	using	this	code:
conn	=	S3Connection('AccessKey',	'PrivateKey')

Make	sure	to	provide	your	public	access	key	as	the	first	argument	and	your	private	access	key	as	the
second	argument.	The	connection,	conn,	gives	you	access	to	all	the	S3	information.	The	following
code	retrieves	a	list	of	all	your	buckets	and	displays	their	names	onscreen:

buckets	=	conn.get_all_buckets()

for	bucket	in	buckets:

				print(bucket.name)

https://aws.amazon.com/sdk-for-python/

Chapter	6
Creating	a	Virtual	Server	Using	EC2

IN	THIS	CHAPTER
	Considering	the	Elastic	Compute	Cloud	(EC2)	feature	set
	Interacting	with	Elastic	Block	Store	(EBS)	volumes
	Considering	images	and	instances

Most	developers	who	create	major	Amazon	Web	Services	(AWS)	applications	interact	with	Elastic
Compute	Cloud	(EC2)	at	some	point	because	EC2	enables	you	to	move	the	computing	environment	to
the	cloud.	Even	though	working	with	a	local	server	might	be	easier	for	the	developer,	users	demand
“anywhere”	access	to	applications	using	any	device.	Consequently,	your	cloud-based	application	must
remain	accessible	to	a	range	of	devices,	from	smartphones	to	desktop	PCs,	and	from	any	location
imaginable	(as	well	as	a	few	locations	you	might	not	consider).	A	local	server	setup	can’t	provide	this
sort	of	environment;	you	really	do	need	to	move	to	the	cloud.	The	first	section	of	this	chapter	considers
the	issue	of	availability,	among	many	other	EC2	development-related	issues.

As	a	developer,	you	need	several	methods	for	configuring	EC2.	This	chapter	considers	two	of	them:
the	console	and	the	Command	Line	Interface	(CLI).	You	have	other	options	as	well,	such	as	writing	an
application	to	perform	the	task,	but	these	two	options	represent	the	best	way	to	get	started.	In	general,
you	use	the	console	when	performing	an	administrator-level	initial	configuration	and	CLI	when
performing	tweaks	to	observe	application	performance	under	various	conditions.	However,	both
options	provide	full	EC2	access.

AWS	provides	you	with	several	storage	options.	Chapter	5	discusses	access	to	Simple	Storage
Service	(S3),	which	is	great	for	short-term	storage	or	for	storing	objects	of	various	kinds.	However,
many	developers	are	more	acquainted	with	block	storage	of	the	type	provided	by	Elastic	Block	Store
(EBS).	In	this	case,	you	have	access	to	a	directory-like	structure	that	provides	a	familiar	way	to
interact	with	data.	You	can	combine	EBS	with	Glacier	to	create	a	long-term,	archived	storage	solution.

When	you	create	an	EC2	instance,	you	can	access	various	kinds	of	storage	after	performing	the
required	configuration.	Two	common	storage	types	are	instance	stores,	which	provide	temporary	block
storage	that	doesn’t	survive	instance	stops,	and	image	stores,	which	offer	longer-term	storage.	Each
kind	of	storage	has	a	place	in	your	development	strategy,	and	the	last	part	of	the	chapter	explains	how.

Getting	to	Know	the	Elastic	Compute	Cloud	(EC2)
Consider	the	meaning	of	elastic	in	many	of	the	AWS	service	names.	When	you	see	the	word	elastic,
you	should	think	of	the	ability	to	stretch	and	contract.	All	the	AWS	documentation	alludes	to	this	fact,
but	it	often	makes	the	whole	process	sound	quite	complicated	when	it	really	isn’t.	Just	think	about	a
computer	that	can	stretch	when	you	need	more	resources	and	contract	when	you	don’t.	With	AWS,	you
pay	only	for	the	services	you	actually	use,	so	this	capability	to	stretch	and	contract	is	important

because	it	means	that	your	organization	can	spend	less	money	and	still	end	up	with	just	the	right
amount	of	services	needed.

	Even	though	some	members	of	your	organization	might	fixate	on	the	issue	of	money,	the	real
value	behind	the	term	elastic	is	time.	Keeping	your	own	equipment	right	sized	is	time	consuming,
especially	when	you	need	to	downsize.	Using	EC2	means	that	you	can	add	or	remove	computing
capacity	in	just	a	few	minutes,	rather	than	weeks	or	months.	Because	new	requirements	tend	to
change	quickly	today,	the	capability	to	right-size	your	capacity	in	minutes	is	crucial,	especially	if
you	really	do	want	that	pay	raise.

Understanding	basic	EC2	configuration
From	a	developer	perspective,	the	elastic	nature	of	EC2	enables	you	to	translate	your	development
environment	into	something	that	you	could	only	simulate	in	the	past	—	a	test	environment	in	which	you
can	consider	the	trade-offs	presented	by	various	configurations.	Having	an	elastic	environment	means
that	you	can	actually	test	your	application	under	various	conditions	so	that	you	can	make	configuration
recommendations	based	on	real-world	knowledge.	In	addition,	you	can	simulate	failure	conditions	and
thereby	build	a	troubleshooting	notebook	before	you	release	an	application	to	production.	Just	as	you
do	with	your	local	server,	you	have	choices	to	make	when	building	an	EC2	instance	(a	single	session
used	to	perform	one	or	more	related	tasks).	The	instance	can	have	these	characteristics:

Operating	system:	Linux	or	Windows.
Instance	size:	You	can	size	the	instance	to	provide	a	small	number	of	services	or	to	act	as	a
cluster	of	computers	for	huge	computing	tasks	(and	everything	in	between).	In	fact,	you	can	create
optimized	instances	for	tasks	that	require	more	resources	in	the	following	areas:

CPU
Memory
Storage
GPU

As	the	tasks	that	you	assign	to	an	instance	change,	so	can	the	instance	configuration.	You	can	adjust	just
the	memory	allocation	for	an	instance	or	provide	more	storage	when	needed.	Most	developers	don’t
worry	too	much	about	how	much	things	cost,	but	that	situation	changes	as	you	move	to	the	cloud.	Your
test	system	will	require	an	investment,	so	knowing	your	options	could	reduce	operating	costs	and	make
you	look	better	in	the	boss’s	eyes.	Here	are	the	pricing	models	available	with	EC2:

On	Demand:	You	pay	for	what	you	use.
Reserved	Instance:	Provides	a	significantly	reduced	price	in	return	for	a	one-time	payment	based
on	what	you	think	you	might	need	in	the	way	of	service.
Spot	Instance:	Lets	you	name	the	price	you	want	to	pay,	with	the	price	affecting	the	level	of
service	you	receive.

	Autoscaling	is	an	EC2	feature	that	you	use	to	ensure	that	your	instance	automatically	changes
configuration	as	the	load	on	it	changes.	Although	it	represents	a	great	solution	for	administrators
on	production	systems,	it	could	pose	problems	for	developers	in	the	test	environment	because	you
can’t	be	sure	about	the	characteristics	of	your	test	setup.	In	general,	you	want	to	avoid	using
autoscaling	on	test	systems	so	that	you	can	maintain	firmer	control	over	test	conditions.

CONSIDERING	WHAT	AUTOSCALING	DOES
Rather	than	require	someone	to	manage	EC2	constantly,	you	can	allow	the	instance	to	make	some	changes	as	needed
based	on	the	requirements	you	specify.	The	metrics	you	define	determine	the	number	and	type	of	instances	that	EC2	runs.
The	metrics	include	standards,	such	as	CPU	utilization	level,	but	you	can	also	define	custom	metrics	as	needed.	A	potential
problem	with	autoscaling	is	that	Amazon	charges	the	organization	for	the	services	it	uses,	which	can	mean	an	unexpectedly
large	bill.	Every	EC2	feature	comes	with	pros	and	cons	that	you	must	balance	when	deciding	on	how	to	configure	your	setup.

Defining	the	security	setup
AWS	also	provides	distinct	security	features.	Developers	are	usually	well	acquainted	with	most	of
these	features	from	a	programming	perspective.	The	use	of	these	security	features	becomes	more
detailed	as	the	book	progresses.	However,	here	is	a	summary	of	the	security	features	used	with	EC2:

Virtual	Private	Cloud	(VPC):	Separates	every	instance	running	on	the	physical	server	from	every
other	instance.	Theoretically,	no	one	can	access	someone	else’s	instance	(even	though	it	can
happen	in	the	real	world	(see	https://rhinosecuritylabs.com/2016/02/aws-security-
vulnerabilities-and-the-attackers-perspective/	for	details	on	how	hackers	have	broken
into	EC2	instances	in	the	past).
Network	Access	Control	Lists	(ACLs)	(Optional):	Acts	as	a	firewall	to	control	both	incoming
and	outgoing	requests	at	the	subnet	level.
Identity	and	Access	Management	(IAM)	Users	and	Permissions:	Controls	the	level	of	access
granted	to	individual	users	and	user	groups.	You	can	both	allow	and	deny	access	to	specific
resources	managed	by	EC2.
Security	Groups:	Acts	as	a	firewall	to	control	both	incoming	and	outgoing	requests	at	the	instance
level.	Each	instance	can	have	up	to	five	security	groups,	each	of	which	can	have	different
permissions.	This	security	feature	provides	finer-grained	control	over	access	than	Network	ACLs,
but	you	must	also	maintain	it	for	each	instance,	rather	than	for	the	virtual	machine	as	a	whole.
Hardware	Security	Device:	Relies	on	a	hardware-based	security	device	that	you	install	to
control	security	between	your	on-premises	network	and	the	AWS	cloud.

	No	amount	of	security	will	thwart	a	determined	intruder.	Anyone	who	wants	to	gain	access	to
your	server	will	find	a	way	to	do	it	no	matter	how	high	you	build	the	walls.	In	addition	to	great
security,	you	must	monitor	the	system	and,	by	assuming	that	someone	will	break	in,	deal	with	the

https://rhinosecuritylabs.com/2016/02/aws-security-vulnerabilities-and-the-attackers-perspective/

intruder	as	quickly	as	possible.	Providing	security	keeps	the	less	skilled	intruder	at	bay	as	well
as	helps	keep	essentially	honest	people	honest,	but	skilled	intruders	will	always	find	a	way	in.
The	severity	of	these	breaches	varies,	but	it	can	actually	cause	businesses	to	fail,	as	in	the	case	of
Code	Spaces	(see	http://arstechnica.com/security/2014/06/aws-console-breach-
leads-to-demise-of-service-with-proven-backup-plan/	for	details).	A	number	of
security	researchers	warn	that	AWS	is	prone	to	security	lapses	(see
http://www.crn.com/news/security/300073621/security-researcher-warns-amazon-

web-services-security-prone-to-dangerous-lapses.htm	for	details).	However,	don’t
assume	that	other	cloud	services	provide	better	security.	Anytime	you	use	external	services,	you
take	significant	risks	as	well.

Using	the	standard	storage	options
A	final	consideration	is	the	use	of	storage.	Each	instance	comes	with	a	specific	amount	of	storage
based	on	the	kind	of	instance	you	create.	If	the	instance	storage	doesn’t	provide	the	functionality	or
capacity	you	need,	you	can	also	add	Elastic	Block	Store	(EBS)	support.	The	main	advantage	of	using
EBS,	besides	capacity	and	flexibility,	is	the	capability	to	define	a	specific	level	of	storage
performance	to	ensure	that	your	application	runs	as	expected.

PROBLEMS	WITH	AUTOSCALING
When	you	read	the	AWS	documentation	and	get	to	the	part	about	autoscaling,	it	sounds	as	if	you	won’t	ever	need	to	worry
about	the	load	on	your	servers.	In	fact,	although	the	text	in	the	documentation	is	correct,	it	has	some	gaps.	For	example,	the
documentation	doesn’t	really	address	issues	like	response	time	and	latency.	As	you	scale	your	AWS	configuration	up	to	meet
additional	demand,	you	may	also	find	that	response	time	and	latency	create	a	problem.	The	video	at
https://www.youtube.com/watch?v=Nswo-4ZIXkI	is	helpful	in	explaining	this	issue,	but	the	essence	of	any	scaling	scenario	is
that	having	more	virtual	machines	means	more	communication	taking	place	between	machines,	which	slows	things	down.
Think	about	it	this	way:	When	a	meeting	takes	place	at	work,	having	more	people	usually	means	that	the	meeting	goes
slower	and	you	accomplish	less	because	you	have	more	lines	of	communication	to	consider.

The	problems	of	autoscaling	are	made	worse	in	two	ways.	The	first	is	that	working	in	the	cloud	tends	to	be	slower	than	using
physical	hardware	because	of	the	communication	distances	and	the	number	of	layers	involved.	The	second	problem	is	that
autoscaling	tends	to	increase	the	problem	of	having	too	many	machines	in	the	communication	loop.	If	you	manually	scale
your	setup,	you	may	decide	to	create	a	single	instance	with	considerably	greater	capacity	than	the	initial	instance	you
created.	Autoscaling	would	create	a	whole	bunch	of	instances	of	that	initial,	smaller	instance	to	do	the	same	thing.
Automation	isn’t	always	the	correct	way	to	handle	scaling	issues,	so	you	need	to	consider	this	requirement	as	part	of	your
EC2	configuration.

Working	with	Elastic	Block	Store	(EBS)	Volumes
The	“Testing	Your	Setup”	section	of	Chapter	2	is	your	first	exposure	to	S3,	and	you	might	be	tempted
to	think	that	S3	can	provide	what	you	need	for	a	test	server.	However,	the	most	important	piece	of
information	to	know	about	S3	now	is	that	it	isn’t	a	file	system	and	doesn’t	act	like	a	hard	drive.	EBS	is
more	like	the	hard	drives	you	have	in	your	physical	file	server.	As	the	name	states,	EBS	is	block
storage,	same	as	any	other	hard	drive	is,	except	that	you	access	it	in	the	cloud.	You	format	the	drive,
just	as	you	would	a	drive	in	your	physical	server,	and	you	can	mount	it	to	an	EC2	instance.	The	main
point	is	that	EBS	makes	your	EC2	instance	work	and	act	more	like	a	physical	server,	so	it	provides	the
kind	of	storage	that	most	developers	know.	The	following	sections	describe	EBS	in	detail.

http://arstechnica.com/security/2014/06/aws-console-breach-leads-to-demise-of-service-with-proven-backup-plan/
http://www.crn.com/news/security/300073621/security-researcher-warns-amazon-web-services-security-prone-to-dangerous-lapses.htm
https://www.youtube.com/watch?v=Nswo-4ZIXkI

Knowing	the	EBS	volume	types
Just	as	there	isn’t	only	one	kind	of	hard	drive,	so	there	isn’t	one	kind	of	EBS	volume.	Amazon
currently	provides	access	to	both	Solid-State	Drive	(SSD)	and	Hard	Disk	Drive	(HDD)	volumes.	SSD
provides	high-speed	access,	and	HDD	provides	lower-cost	access	of	a	more	traditional	hard	drive.
Amazon	further	subdivides	the	two	technologies	into	two	types	each	(listed	in	order	of	speed):

EBS	Provisioned	IOPS	SSD:	Provides	high-speed	data	access	that	you	commonly	need	for	data-
intensive	applications	that	rely	on	moderately	sized	databases.
EBS	General	Purpose	SSD:	Creates	a	medium-high-speed	environment	for	low-latency
applications.	Amazon	suggests	this	kind	of	volume	for	your	boot	drive.	However,	whether	you
actually	need	this	amount	of	speed	for	your	setup	depends	on	the	kinds	of	applications	you	plan	to
run.
Throughput	Optimized	HDD:	Defines	a	high-speed	hard	drive	environment,	which	can’t	compete
with	even	a	standard	SSD.	However,	this	volume	type	will	work	with	most	common	applications,
and	Amazon	suggests	using	it	for	big	data	or	data-warehouse	applications.	This	is	probably	the
best	option	to	choose	when	money	is	an	issue	and	you	don’t	really	need	the	performance	that	SSD
provides.
Cold	HDD:	Provides	the	lowest-speed	option	that	Amazon	supports.	You	use	this	volume	type	for
data	you	access	less	often	than	data	you	place	on	the	other	volume	types	(think	data	you	use	once	a
week,	rather	than	once	every	day).	This	isn’t	an	archive	option;	it’s	more	like	a	low-speed	option
for	items	you	don’t	need	constantly,	such	as	a	picture	database.

	As	you	move	toward	higher-speed	products,	you	also	pay	a	higher	price.	For	example,	at	the
time	of	writing,	a	Cold	HDD	volume	costs	only	$0.025/GB/month,	but	an	EBS	Provisioned	SSD
volume	costs	$0.125/GB/month.	You	can	find	price	and	speed	comparison	details	at
http://aws.amazon.com/ebs/details/#piops.	The	table	provided	contains	some	interesting
statistics.	For	example,	all	the	volume	types	top	out	at	16TB	and	support	a	maximum	throughput
per	instance	of	800MB/s.

Creating	an	EBS	volume
To	use	EC2	effectively	for	development,	you	must	create	an	EBS	volume	first.	The	EBS	volume	is	part
of	the	instance	configuration	process	described	later,	in	the	“Discovering	Images	and	Instances”
section	of	this	chapter.	The	two	easiest	methods	for	creating	an	EBS	volume	are	the	console	and	CLI.
However,	you	can	also	write	a	custom	application	to	perform	the	task	(assuming	that	you	perform	this
task	often	enough	to	make	the	effort	worthwhile).

	In	the	“Signing	into	a	user	account”	section	of	Chapter	5,	you	sign	into	your	user	account	for
the	first	time.	When	performing	configuration	tasks,	such	as	configuring	EBS,	make	sure	to	rely	on
your	user	account	rather	than	your	root	account	to	perform	the	task.	The	following	sections
assume	that	you	use	your	user	account.	However,	they	should	also	work	using	the	root	account.

http://aws.amazon.com/ebs/details/#piops

Using	the	console
By	far	the	easiest	method	for	creating	an	EBS	volume	is	the	console.	The	following	steps	describe
how	to	create	a	simple	volume	that	you	can	use	with	EC2	for	the	procedures	in	this	book.	However,
you	can	use	these	same	steps	for	creating	volumes	with	other	characteristics	later.

1.	 Sign	into	AWS	by	using	your	user	account.
2.	 Navigate	to	the	EC2	Console	at	https://console.aws.amazon.com/ec2/.

You	see	the	page	shown	in	Figure	6-1.	Notice	the	Navigation	pane	on	the	left,	which	contains
options	for	performing	various	EC2-related	tasks.	The	Resources	area	of	the	main	pane	tells	you
the	statistics	for	your	EC2	setup,	which	currently	includes	just	the	one	security	group	that	you	see
how	to	create	in	the	“Getting	access	keys”	section	of	Chapter	2.

3.	 Choose	an	EC2	setup	region	from	the	Region	drop-down	list	at	the	top	of	the	page.
The	example	uses	the	Oregon	region.

4.	 Select	Elastic	Block	Store   Volumes	in	the	Navigation	pane.
The	EC2	Console	shows	that	you	don’t	currently	have	any	volumes	defined.

5.	 Click	Create	Volume.
You	see	the	Create	Volume	dialog	box,	shown	in	Figure	6-2.
Notice	that	you	can	choose	a	volume	type	and	size,	but	not	the	Input/output	Operations	Per	Second
(IOPS)	or	the	throughput,	which	are	available	only	with	certain	volume	types.	The	Availability
Zone	field	contains	the	location	of	the	storage,	which	must	match	your	EC2	setup.	The	Snapshot	ID
field	contains	the	name	of	an	S3	storage	location	to	use	for	incremental	backups	of	your	EBS	data.
You	can	also	choose	to	encrypt	sensitive	data,	but	doing	so	places	some	limits	on	how	you	can	use
EBS.	For	example,	you	can’t	use	encryption	with	all	EC2	instance	types.	The	discussion	at
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html	provides
additional	information	about	encryption.

	This	book	uses	the	default	EBS	volume	settings,	but	in	a	real	developer	environment,	you
select	settings	that	match	the	production	environment	in	which	the	application	will	operate.	Unlike
a	local	setup,	cloud-based	development	lets	you	recreate	the	production	environment	precisely,
which	provides	significant	advantages	during	the	development	process.	Using	the	same
environment	during	development	and	testing	helps	ensure	that	you	see	any	cloud-induced	errors,	as
well	as	discover	any	potential	performance	issues.

6.	 Click	Create.
AWS	creates	a	new	volume	for	you	and	displays	statistics	about	it,	as	shown	in	Figure	6-3.	Note
that	the	State	field	on	the	Description	tab	says	Available.	You	can’t	make	changes	to	the	volume
until	AWS	makes	it	available.
The	new	volume	lacks	any	sort	of	backup.	The	next	step	configures	a	snapshot	that	AWS	uses	to
perform	incremental	backups	of	the	EBS	data,	reducing	the	risk	of	lost	data.

7.	 Choose	Actions   Create	Snapshot.

https://console.aws.amazon.com/ec2/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html

You	see	the	Create	Snapshot	dialog	box,	shown	in	Figure	6-4.	Notice	that	AWS	fills	in	the	Volume
field	for	you	and	determines	the	need	for	encryption	based	on	the	volume	settings.

8.	 Type	EBS.Backup	in	the	Name	field,	type	Test	Backup	in	the	Description	field,	and	then	click
Create.
You	see	a	dialog	box	telling	you	that	AWS	has	started	the	snapshot.

9.	 Click	Close.
The	volume	is	ready	to	use.

FIGURE	6-1:	The	EC2	Console	tells	you	all	about	your	current	EC2	configuration.

FIGURE	6-2:	The	Create	Volume	dialog	box	contains	settings	for	defining	a	new	EBS	volume.

FIGURE	6-3:	A	new	volume	displays	all	pertinent	statistics,	such	as	the	size	and	state.

FIGURE	6-4:	Define	an	S3	connection	to	use	for	your	EBS	volume	backup.

When	you	finish	this	example,	you	can	delete	the	volume	you	created	by	selecting	its	entry	in	the	list
and	choosing	Actions   Delete	Volume.	You	automatically	create	the	required	EBS	volume	required
for	your	EC2	setup	in	the	“Creating	an	instance”	section,	later	in	this	chapter.	However,	in	a	real-
world	setup,	you	can	attach	this	volume	to	any	EC2	instance	or	detach	it	when	it’s	no	longer	needed.

Using	CLI
Working	with	CLI	means	that	you	can	automate	tasks	using	a	variety	of	methods,	such	as	batch	files.
However,	even	if	your	goal	isn’t	automation,	using	CLI	means	that	you	can	perform	tasks	using	fewer
steps.	The	trade-off	is	that	the	potential	for	error	is	higher	and	you	must	also	know	the	minimum
commands	required	to	perform	tasks.	The	following	steps	repeat	the	process	discussed	in	the	previous
section	but	use	CLI.	The	steps	assume	that	you	have	already	downloaded	and	configured	CLI	for	use
by	employing	the	instructions	found	in	the	“Installing	the	Command	Line	Interface	Software”	section	of
Chapter	5.

1.	 Open	a	command	prompt	or	terminal	window	that	allows	access	to	the	aws	utility.
2.	 Type	aws	ec2	create-volume	--availability-zone	us-west-2a	--size	100	--volume-type	gp2	and

press	Enter.
The	book	uses	the	us-west-2a,	US	West	(Oregon)	availability	zone.	However,	you	can	use	any
availability	zone	required	for	your	setup.	You	must	provide	a	size.	In	looking	at	Figure	6-2,	you
see	that	the	default	size	is	100GiB.	Also	important	is	to	specify	the	volume	type,	which	is	GP2,	as

shown	in	the	figure.	You	see	the	volume	creation	information,	shown	in	Figure	6-5.	Note	the
VolumeId	field	near	the	bottom.	This	value	is	important	for	many	other	tasks,	so	you	need	to	keep
track	of	it.
As	with	the	volume	you	created	in	the	GUI,	you	don’t	have	a	snapshot	in	place	for	backup.	The
next	step	performs	this	task.

3.	 Type	aws	ec2	create-snapshot	--volume-id	vol-0e271a59054f6e9e3	--description	"Test	Backup"
and	press	Enter.
You	must	replace	the	--volume-id	argument	with	the	actual	VolumeId	value	from	your	setup,	as
shown	in	Figure	6-5.	The	VolumeId	for	your	setup	is	unique,	so	you	can’t	type	the	VolumeId	shown
in	the	book.	CLI	creates	a	snapshot	of	the	EBS	volume.	This	part	of	the	example	points	to	one	of
the	problems	with	using	CLI.	No	command-line	switch	exists	for	naming	the	snapshot,	so	you	must
accept	whatever	name	AWS	provides.	The	limitation	means	using	names	like	snap-
029c5cd6711ef64d8,	which	are	much	harder	to	read	and	type	than	EBS.Backup.	Figure	6-6	shows
the	output	of	this	command.

FIGURE	6-5:	CLI	shows	the	characteristics	of	the	volume	you	created.

FIGURE	6-6:	Make	sure	you	provide	a	snapshot	for	backup	when	using	CLI.

Using	CLI	means	typing	just	two	commands	in	three	steps	instead	of	the	nine	steps	required	if	you	use
the	console.	The	time	savings	can	become	substantial,	especially	when	you	need	to	set	up	a	number	of
development	configurations.	When	you	finish	this	example,	you	can	delete	the	volume	you	created	by
typing	aws	ec2	delete-volume	--volume-id	vol-0e271a59054f6e9e3	and	pressing	Enter.	As	before,
you	must	replace	the	--volume-id	argument	with	the	actual	VolumeId	value	from	your	setup.

Discovering	Images	and	Instances
An	Amazon	Machine	Image	(AMI)	is	a	kind	of	blueprint.	You	tell	AWS	to	use	an	AMI	to	build	an
instance.	As	with	blueprints,	AWS	can	use	a	single	AMI	to	build	as	many	instances	as	needed	for	a
particular	purpose.	Every	instance	created	with	the	AMI	is	precisely	the	same	from	the	developer’s
perspective.	AMI	is	one	of	the	EC2	features	that	enable	you	to	autoscale.	Amazon	uses	the	AMI	to
create	more	instances	as	needed	so	that	your	application	continues	to	run	no	matter	how	many	people
may	want	to	access	it.

	You	don’t	have	to	create	an	AMI;	Amazon	provides	several	default	AMIs	that	you	can	use.
However,	if	you	want	to	create	a	custom	environment	to	use	with	EC2,	you	need	to	create	your
own	AMI.	As	a	developer,	you	likely	want	to	use	custom	AMIs,	as	needed,	that	the	organization’s
administrators	define.	The	reason	to	use	a	custom	setup	is	to	ensure	that	your	development
environment	matches	the	production	environment	in	which	the	application	will	operate.
Consequently,	as	a	developer,	you	seldom	need	to	create	an	AMI;	you	either	use	one	of	the	default
AMIs	or	a	custom	AMI	that	your	organization	already	uses.	This	book	assumes	that	you	use	one	of
the	default	AMIs.	The	following	sections	show	the	easiest	method	for	creating	an	instance	using
one	of	Amazon’s	AMIs.

DEFINING	A	CUSTOM	AMI
Theoretically,	if	you’re	a	consultant	and	you	must	configure	your	system	to	match	a	client’s	system,	you	may	need	to	create
your	own	custom	AMI	(relying	on	the	customer’s	AMI	is	a	better	scenario	because	you	don’t	have	to	worry	about	configuration
issues	getting	in	the	way	of	a	functional	application).	Before	you	can	use	an	AMI,	you	must	first	create	and	configure	it	as
described	at	http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html.	In	addition,	you	must	register	the	AMI	with
AWS.	After	you’ve	registered	it,	you	can	tell	AWS	to	create	(launch)	instances	based	on	the	AMI.	A	user	or	application
connects	to	an	instance	in	order	to	use	it,	and	a	developer	can	configure	an	instance	to	meet	particular	requirements.	You
can	copy	your	AMI	between	regions	to	help	improve	overall	application	speed	if	you	want.	To	stop	using	an	AMI,	you
deregister	it.

Generating	security	keys
To	access	your	EC2	instance	securely,	you	need	to	generate	security	keys.	These	keys	enable	you	to	be
verified	as	the	person	logging	on	to	the	EC2	instance.	The	following	steps	help	you	create	a	key	pair
that	you	need	when	creating	your	instance	in	the	next	section:

1.	 Select	Network	&	Security   Key	Pairs	in	the	Navigation	pane.
AWS	tells	you	that	you	don’t	have	any	key	pairs	defined.

2.	 Click	Create	Key	Pair.
You	see	a	Create	Key	Pair	dialog	box	that	asks	for	a	key	pair	name.

3.	 Type	MyKeyPair	in	the	Key	Pair	Name	field	and	click	Create.
You	see	a	download	dialog	box	for	the	browser	that	you	use.	Be	sure	to	save	a	copy	of	the	key	pair
as	a	Privacy-Enhanced	Mail	(.pem)	file.	The	article	at
http://fileformats.archiveteam.org/wiki/PEM	tells	more	about	this	particular	file	format.

4.	 Save	the	.pem	file	to	disk.
The	Key	Pairs	page	now	shows	a	key	pair	named	MyKeyPair	with	all	the	pertinent	information.

Creating	an	instance
The	process	for	creating	an	EC2	instance	can	become	quite	complex.	You	can	manually	create	key
pairs	used	to	log	in	to	the	instance,	for	example,	or	create	a	special	security	group	to	help	maintain
EC2	security.	In	addition,	you	can	use	a	custom	AMI	to	configure	your	instance.	The	problem	is	that	all
these	extra	steps	make	what	should	be	a	relatively	simple	process	for	experimentation	purposes	quite
difficult.	The	following	steps	show	the	easiest,	fastest	method	for	creating	an	EC2	instance.	However,
keep	in	mind	that	you	can	do	a	lot	more	with	EC2	setups	than	described	in	this	chapter.	This	procedure
assumes	that	you	have	already	logged	in	and	selected	the	same	region	used	for	your	EBS	volume.

1.	 Select	Instances   Instances	in	the	Navigation	pane.
AWS	tells	you	that	you	don’t	have	any	EC2	instances	running.

2.	 Click	Launch	Instance.
You	see	a	series	of	AMI	entries,	as	shown	in	Figure	6-7.	Amazon	owns	all	these	AMIs.	You	can
also	choose	to	use	your	own	AMI	or	obtain	access	to	an	AMI	through	the	AWS	Marketplace	or
Community.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://fileformats.archiveteam.org/wiki/PEM

	Note	that	the	first	AMI	is	marked	as	Free	Tier	Eligible.	Unless	you	want	to	pay	for	using
EC2,	you	must	select	one	of	the	Free	Tier	Eligible	entries,	which	include	Amazon	Linux,	Red	Hat
Linux,	SUSE	Linux,	Ubuntu	Linux,	and	Windows	Server	(all	in	various	versions).	To	ensure	that
you	don’t	accidentally	choose	a	paid	option,	select	the	Free	Tier	Only	check	box	on	the	left	side	of
the	page.

3.	 Click	Select	next	to	the	Amazon	Linux	AMI	2017	entry.
You	see	a	listing	of	instance	types,	as	shown	in	Figure	6-8.	One	of	the	instance	types	is	marked
Free	Tier	Eligible.	You	must	choose	this	option	unless	you	want	to	pay	for	your	EC2	instance.

	Choosing	to	configure	the	instance	details	or	change	storage	requirements	will	create	a
new	instance	type.	The	new	instance	type	won’t	be	free-tier	eligible.	You	can	view	the	various
configuration	options	available,	but	click	Cancel	instead	of	creating	the	instance	if	you	want	to
continue	working	with	AWS	free	of	charge.

4.	 Select	the	instance	type	that	you	want	to	create	and	then	click	Review	and	Launch.
You	see	the	Step	7:	Review	Instance	Launch	page,	shown	in	Figure	6-9.	The	figure	shows	the
Security	Groups	section.	When	you	create	your	instance,	Amazon	warns	you	that	anyone	can	access
it.	Given	that	you	probably	want	to	work	with	EC2	privately,	you	must	modify	the	security	group
settings	to	reduce	the	risk	of	prying	eyes.

5.	 Click	Edit	Security	Groups.
You	see	the	Step	6:	Configure	Security	Group	page,	shown	in	Figure	6-10.

6.	 Type	Default-Launch	in	the	Security	Group	Name	field.
Use	a	group	name	that’s	both	short	and	meaningful	to	avoid	potential	confusion	later.

7.	 (Optional)	Type	a	group	description	in	the	Description	field.
8.	 Choose	All	Traffic	in	the	Type	field.

Using	this	option	gives	you	maximum	EC2	access.	However,	in	a	real-world	setup,	you	limit	the
Type	field	entries	to	just	the	protocols	you	actually	plan	to	use.	For	example,	if	you	don’t	plan	to
use	Secure	Shell	(SSH)	to	interact	with	EC2,	don’t	include	it	in	the	list	of	allowed	protocols.

9.	 Choose	My	IP	in	the	Source	field.
By	limiting	the	access	to	just	your	IP,	you	reduce	the	likelihood	that	anyone	will	access	the	EC2
setup.	However,	intruders	can	find	all	sorts	of	ways	around	this	precaution,	such	as	by	using	IP
spoofing	(see	http://searchsecurity.techtarget.com/definition/IP-spoofing	for	more
details	about	this	technique).

10.	 Click	Add	Rule.
AWS	adds	the	rule	to	the	list.	Click	the	X	next	to	the	new	rule	that	AWS	automatically	generates	in
some	cases	to	remove	it;	you	don’t	need	it.

11.	 Click	Review	and	Launch.

http://searchsecurity.techtarget.com/definition/IP-spoofing

The	EC2	Management	Console	takes	you	back	to	the	Step	7:	Review	Instance	Launch	page,	shown
previously	in	Figure	6-9.

12.	 Click	Launch.
You	see	a	Select	an	Existing	Key	Pair	or	Create	a	New	Key	Pair	dialog	box,	as	shown	in	Figure	6-
11.

13.	 Select	Choose	an	Existing	Key	Pair	in	the	first	field.
14.	 Select	MyKeyPair	in	the	second	field.
15.	 Select	the	check	box	to	acknowledge	that	you	have	access	to	the	private	key	and	then	click

Launch	Instances.
AWS	starts	your	EC2	instance.	A	dialog	box	provides	additional	information	about	your	instance,
as	shown	in	Figure	6-12.	Note	the	link	for	your	instance	in	the	Your	Instances	Are	Now	Launching
box.

16.	 Click	the	link	for	your	instance.
You	see	the	running	instance	information,	as	shown	in	Figure	6-13.

FIGURE	6-7:	To	start	an	instance,	you	must	select	one	of	the	available	AMIs.

FIGURE	6-8:	Choose	the	kind	of	instance	you	want	to	create.

FIGURE	6-9:	Review	the	instance	configuration	before	you	launch	it.

FIGURE	6-10:	Create	a	new,	more	secure	security	group	for	your	EC2	setup.

FIGURE	6-11:	Choose	the	key	pair	that	you	want	to	use.

FIGURE	6-12:	Amazon	provides	additional	information	about	your	instance	while	you	wait	for	it	to	start.

FIGURE	6-13:	Verify	that	your	instance	is	running	before	you	attempt	to	connect	to	it.

Connecting	to	the	instance
You	have	all	sorts	of	options	for	connecting	to	your	instance.	For	example,	Windows	users	have	the
option	of	using	PuTTY	(see	http://www.chiark.greenend.org.uk/~sgtatham/putty/	for
details).	However,	the	easiest	method	for	connecting	to	your	instance	is	to	use	the	Connect	button
found	on	the	Instances	page,	shown	in	Figure	6-13.	Unfortunately,	to	use	this	option,	your	browser	must
support	Java	and	you	must	have	Java	enabled.	Because	of	security	concerns,	some	browsers	no	longer
support	Java	or	create	significant	hurdles	to	using	Java.	If	you	have	Java	configured	to	start	only	with
permission,	you	must	provide	the	required	permission	when	asked.	If	you	truly	don’t	want	to	work
with	Java,	you	can	find	additional,	platform-specific	options	at
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html.

After	you	click	Connect,	you	see	two	options	for	connecting	to	your	instance,	as	shown	in	Figure	6-14.
Using	a	Standalone	SSH	Client	means	installing	a	product	such	as	PuTTY	on	your	system.	If	you	want
the	simple	method,	select	the	second	option,	A	Java	SSH	Client	Directly	from	My	Browser	(Java
required;	newer	versions	of	Firefox	don’t	provide	this	support	unless	you	use	the	Extended	Support
Release,	ESR,	found	at	https://www.mozilla.org/en-US/firefox/organizations/).

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://www.mozilla.org/en-US/firefox/organizations/

FIGURE	6-14:	Using	a	Java	client	is	the	easiest	connection	method.

You	must	supply	the	location	of	the	key	pair	file	on	your	hard	drive	in	the	Private	Key	Path	field.	After
you	supply	this	information,	click	Launch	SSH	Client.	If	this	is	the	first	time	you	use	this	feature,	some
warning	messages	appear	and	then	the	client	installs	on	your	system.	After	initialization,	you	see	an
SSH	client	similar	to	the	one	shown	in	Figure	6-15,	and	you	can	interact	with	your	EC2	setup	through
this	client.

FIGURE	6-15:	After	you	connect,	you	can	begin	working	with	your	EC2	instance.

To	prove	to	yourself	that	you	really	have	connected	to	EC2,	start	a	copy	of	Python	by	typing	Python	at
the	prompt	and	pressing	Enter.	A	copy	of	Python	starts	and	displays	its	version	number.	To	exit	Python,
type	quit()	and	press	Enter.	Type	exit	and	press	Enter	to	end	the	EC2	session.	Choose	File   Close	to
close	the	SSH	client	terminal.

Part	3
Performing	Basic	Development	Tasks

IN	THIS	PART	…
Perform	AWS	input	and	output.

Work	with	Elastic	Beanstalk	(EB).

Use	batch	processes	and	scripts.

Employ	aws-shell.

Execute	tasks	automatically	with	Lambda.

Chapter	7
Understanding	AWS	Input/Output

IN	THIS	CHAPTER
	Understanding	AWS	input	and	output
	Interacting	with	JSON
	Interacting	with	XML
	Developing	and	using	APIs

Previous	chapters	of	the	book	take	you	through	creating	a	developer	setup,	performing	essential
Amazon	Web	Services	(AWS)	configuration	tasks,	and	ensuring	that	you	can	actually	contact	AWS	to
perform	useful	work.	You	also	see	how	to	use	command-line	interface	(CLI),	browser-based,	and
desktop-based	methods	to	perform	these	tasks,	in	addition	to	working	with	the	AWS	console.	Of
course,	these	are	all	good	starting	points	for	a	developer,	but	developers	need	to	know	a	lot	more
about	how	input	and	output	works	when	dealing	with	an	application	programming	interface	(API),
which	is	what	you’re	really	dealing	with	when	working	with	AWS.	Other	people	see	services,	but
what	you	really	need	to	see	are	black	boxes	where	a	given	input	provides	a	specific	output.

AWS	typically	performs	tasks	using	two	specific	data	formats:	JavaScript	Object	Notation	(JSON)	and
eXtensible	Markup	Language	(XML).	This	chapter	doesn’t	provide	you	with	a	primer	on	these	two
formats,	but	it	does	offer	some	references	you	can	use	to	update	your	skills	as	needed.	The	chapter
also	gives	you	the	AWS	view	of	these	formats	—	an	understanding	of	how	you	can	expect	AWS	to	use
JSON	and	XML	to	make	structured	input	and	output	possible.	For	example,	when	creating	a	security
policy,	you	describe	the	policy	using	JSON.	To	perform	Create,	Read,	Update,	and	Delete	(CRUD)
operations	that	involve	security	in	your	applications,	you	need	to	know	the	grammar	that	AWS	uses	for
this	task.

Part	of	any	organization’s	input/output	are	custom	APIs.	After	all,	you	have	your	own	business
processes	to	consider	as	part	of	any	development	solution.	AWS	provides	the	means	for	including
custom	APIs	using	the	Amazon	API	Gateway.	This	chapter	gives	you	a	good	starting	point	for	working
with	the	Amazon	API	Gateway	by	explaining	basic	functionality,	defining	what	is	meant	by	models	and
templates,	and	then	demonstrating	several	ways	to	interact	with	the	Amazon	API	Gateway	(console,
CLI,	and	use	of	application	code).	Discovering	how	to	use	the	Amazon	API	Gateway	is	an	essential
part	of	working	with	AWS	fully	to	meet	specific	application	requirements.

Considering	the	Input/Output	Options
While	you	work	with	the	console	applications,	perform	some	simple	requests	using	REST,	and	interact
with	AWS	using	other	basic	means,	you	might	notice	that	AWS	relies	heavily	on	JSON.	In	fact,	you
might	notice	that	XML	is	completely	absent.	It’s	absent	because	JSON	is	the	default	option	for	both
application	input	and	output.	However,	you	do	have	other	options	when	working	with	AWS;	you
simply	need	to	make	the	requests	using	the	appropriate	means.	The	most	common	alternative	input	and

output	is	XML.	However,	you	can	also	use	appropriately	formatted	plain-text	requests.	This	chapter
considers	what	you	need	to	do	to	work	with	XML,	but	the	same	approach	works	when	using	other
data-formatting	strategies.

When	working	with	AWS,	you	must	consider	the	services	that	you	want	to	use.	In	some	cases,	your
only	viable	input/output	option	is	JSON.	For	example,	the	message	thread	at
https://forums.aws.amazon.com/thread.jspa?messageID=690027	discusses	the	use	of	non-
JSON	data	with	a	Lambda	function.	According	to	the	various	inputs,	it’s	currently	impossible	to	do
this	(although	an	AWS	developer	did	say	that	the	development	team	added	this	sort	of	input	as	a
backlog	item).	The	point	is	that	you	do	have	significant	limits	when	working	with	non-JSON	data
while	interacting	with	AWS.

Fortunately,	you	can	overcome	some	of	the	data-format	issues	by	using	a	mapping	template	as
described	in	the	“Mapping	templates”	section,	later	in	this	chapter.	Essentially,	a	mapping	template
enables	you	to	map	the	incoming	data	type	to	the	data	type	needed	by	the	backend.	You	need	one
template	for	each	kind	of	data	format	you	support.	For	example,	an	application	might	support	three
types:	text/plain,	application/json,	and	application/xml,	each	of	which	would	require	a	separate
template.

Mapping	templates	can	resolve	both	input	and	output	data	needs.	However,	it	pays	to	be	cautious	in
your	expectations	of	how	well	the	mapping	will	work.	For	example,	the	message	thread	discussion	at
https://forums.aws.amazon.com/message.jspa?messageID=651944	talks	about	some	issues	in
getting	XML	input	and	output	to	work	properly.	AWS	is	a	complex	setup	that	has	grown	quickly	and	is
experiencing	some	growing	pains.	Fortunately,	the	development	staff	seems	to	be	willing	to	listen	to
bug	reports	and	requests	for	needed	upgrades.

Working	with	JSON
At	one	time,	AWS	relied	heavily	on	XML	to	perform	tasks.	However,	today	you	find	that	AWS	relies
almost	exclusively	on	JSON	to	perform	tasks.	In	fact,	more	than	a	few	developers	have	complained
that	not	everyone	has	moved	to	XML	yet,	and	the	AWS	developers	do	plan	to	add	some	XML
functionality	back	into	the	API.	The	reasons	for	using	JSON	instead	of	XML	are	many,	but	here	are	the
most	commonly	cited:

Shorter:	JSON	requires	less	code	than	XML	to	convey	the	same	information.
Quicker:	Smaller	data	exchanges	mean	that	you	spend	less	time	reading	and	writing	data.
Support	of	Arrays:	XML	doesn’t	support	arrays,	which	is	a	major	problem	in	today’s	data
environment.
Object	output:	Parsing	JSON	automatically	produces	an	object	that	requires	less	manipulation	to
process.
Clearer:	The	chance	of	misinterpreting	a	JSON	data	stream	is	lower	than	with	XML.

This	book	assumes	that	you	have	enough	JSON	knowledge	to	understand	the	example	code.	Of	course,
that’s	quite	an	assumption.	You	may	have	only	passing	knowledge	of	JSON,	or	no	knowledge	at	all.
The	best	way	to	get	started	with	JSON	is	to	rely	on	tutorials,	such	as	the	following:

https://forums.aws.amazon.com/thread.jspa?messageID=690027
https://forums.aws.amazon.com/message.jspa?messageID=651944

W3Schools.com:	https://www.w3schools.com/js/js_json_intro.asp

TutorialsPoint:	https://www.tutorialspoint.com/json/

w3resource:	http://www.w3resource.com/JSON/introduction.php

	You	can	also	take	an	online	course	at	places	like	Lynda,	at	https://www.lynda.com/JSON-
training-tutorials/1551-0.html.	When	working	with	a	specific	language,	knowing	how	that
language	interacts	with	JSON	is	also	helpful.	For	example,	you	can	find	a	tutorial	about	JSON
interactivity	with	Python	at	https://code.tutsplus.com/tutorials/how-to-work-with-
json-data-using-python--cms-25758.

Working	with	XML
Sometimes	technology	moves	at	an	astounding	pace,	leaving	many	people	behind.	It’s	a	problem
because	the	old	code	and	old	data	doesn’t	go	away	—	it’s	still	there,	and	people	still	need	to	use	it.
That’s	the	problem	with	XML.	Looking	at	message	threads	like	the	one	at
https://forums.aws.amazon.com/message.jspa?messageID=651944	tells	you	that	many
developers	have	problems	working	with	an	AWS	fixated	on	JSON	because	they	still	have	to	deal	with
XML,	sometimes	in	ways	that	make	converting	the	data	to	JSON	impossible.	Keeping	the	need	to
support	XML	in	mind,	a	few	of	the	examples	in	this	book	help	demonstrate	the	required	techniques.
However,	moving	your	data	to	JSON	format	as	quickly	as	possible	will	reduce	the	work	required	to
use	AWS.

	AWS	doesn’t	support	the	use	of	XML	with	some	services.	For	example,	as	pointed	out	by	the
message	thread	at	https://forums.aws.amazon.com/thread.jspa?threadID=221346,	you
can’t	use	XML	as	input	to	Lambda.	In	this	case,	you	must	use	JSON.	The	AWS	development	team
representative	promised	to	place	XML	support	on	the	backlist	of	items	to	add	to	Lambda,	but
other	message	threads,	like	the	one	at
http://stackoverflow.com/questions/37194999/aws-api-gateway-accept-xml-

request,	show	that	Amazon	still	hasn’t	added	this	support.	You	need	to	ensure	that	the	service
you	want	to	access	will	support	XML	input	before	writing	an	application	that	will	never	work.

This	book	assumes	that	you	know	enough	about	XML	to	understand	the	various	examples	that	rely	on
it.	Most	developers	know	a	little	more	about	XML	than	JSON	because	XML	has	been	around	a	lot
longer.	However,	some	developers	haven’t	been	exposed	to	XML,	so	you	need	to	know	where	to	find
additional	information.	The	best	tutorials	are	at

W3Schools:	https://www.w3schools.com/xml/

TutorialsPoint:	https://www.tutorialspoint.com/xml/

XMLFiles.com:	http://www.xmlfiles.com/xml/

https://www.w3schools.com/js/js_json_intro.asp
https://www.tutorialspoint.com/json/
http://www.w3resource.com/JSON/introduction.php
https://www.lynda.com/JSON-training-tutorials/1551-0.html
https://code.tutsplus.com/tutorials/how-to-work-with-json-data-using-python--cms-25758
https://forums.aws.amazon.com/message.jspa?messageID=651944
https://forums.aws.amazon.com/thread.jspa?threadID=221346
http://stackoverflow.com/questions/37194999/aws-api-gateway-accept-xml-request
https://www.w3schools.com/xml/
https://www.tutorialspoint.com/xml/
http://www.xmlfiles.com/xml/

	You	may	need	some	other	method	than	tutorials	to	understand	XML	fully.	Sites	such	as	Lynda
(https://www.lynda.com/XML-training-tutorials/334-0.html)	provide	you	with	online,
hands-on	courses.	In	fact,	Lynda	offers	an	array	of	courses	that	cover	all	the	XML	disciplines.
Seeing	how	XML	works	with	your	language	of	choice	is	also	important.	After	you	have	the	basics
down,	you	might	want	to	try	tutorials	that	provide	language-specific	interaction,	such	as	the
Python-specific	XML	tutorial	at
https://wiki.python.org/moin/Tutorials%20on%20XML%20processing%20with%20Python

Working	with	Amazon	API	Gateway
The	API	Gateway	provides	the	means	to	interact	with	Amazon	using	a	number	of	methodologies.	It
consists	of	resources	and	methods.	A	resource	is	an	object	providing	one	or	more	operations	that	you
interact	with	using	appropriate	HTTP	verbs,	including	GET,	POST,	and	DELETE.	Combining	a	resource
path	with	a	specific	operation	on	that	resource	creates	a	method.	API	users	can	call	methods	to	obtain
controlled	access	to	resources	and	receive	a	response.	To	maintain	control,	you	define	mappings
between	the	method	and	the	back	end.	The	following	sections	help	you	better	understand	how	the	API
Gateway	creates	a	controlled	resource-access	environment.

Defining	the	uses	for	the	API	Gateway
Viewing	the	API	Gateway	as	an	integration	strategy	is	essential.	You	use	it	in	the	following	ways	to
provide	access	to	code	on	your	AWS	setup:

Control	service:	Relies	on	REST	to	provide	access	to	various	AWS	services.	For	example,	you
can	use	it	for	access	to	the	Lambda	service	functions	you	create	(see	Chapter	10).	This	feature	also
enables	access	to	specific	services,	such	as	Amazon	DynamoDB,	Amazon	S3,	and	Amazon
Kinesis.	This	form	of	API	Gateway	access	offers	the	following	access	methods:

REST	API	requests	and	responses
Console
CLI
SDK	(for	supported	platforms	and	languages)

Execution	service:	Offers	deployed	API	access	to	back-end	functionality.	You	use	standard	HTTP
protocols	or	a	language-specific	SDK	to	perform	this	task.

	As	with	any	other	form	of	web	service,	the	API	Gateway	enables	you	to	secure	access	to	the
back	end.	You	can	use	IAM	roles	and	policies	or	API	Gateway	custom	authorizers	to	perform	this
task.	Of	the	two,	using	IAM	is	generally	the	easiest	and	fastest	method,	and	using	a	custom
authorizer	provides	better	flexibility.	Most	developers	will	find	that	using	the	IAM	approach
works	best,	and	you	should	use	it	as	your	first	choice.

https://www.lynda.com/XML-training-tutorials/334-0.html
https://wiki.python.org/moin/Tutorials%20on%20XML%20processing%20with%20Python

Defining	the	security	requirements
The	“Signing	into	a	user	account”	section	of	Chapter	5	tells	you	how	to	sign	in	to	your	user	account
rather	than	rely	on	the	root	account.	A	user	account	is	important	to	ensure	that	you	keep	your	AWS
configuration	safe.	However,	a	user	account	designed	for	a	developer	isn’t	the	best	account	for	a	client
application	to	use.	When	creating	a	production	application,	you	need	to	create	other	users	and	other
groups	by	using	the	techniques	shown	in	Chapter	2.	In	fact,	the	best	idea	is	to	use	the	same	users	and
groups	as	found	in	your	production	environment,	which	you	can	likely	obtain	from	an	administrator.

AWS	assigns	security	based	on	policies.	A	managed	policy	is	one	that	AWS	supplies.	Any	custom
policy	you	create	is	an	inline	policy.	Both	policy	types	rely	on	JSON-formatted	entries,	such	as	the
one	shown	here	for	the	AmazonAPIGatewayAdministrator	managed	policy:

{

		"Version":	"2012-10-17",

		"Statement":	[

				{

						"Effect":	"Allow",

						"Action":	[

								"apigateway:*"

],

						"Resource":	"arn:aws:apigateway:*::/*"

				}

]

}

The	policy	depends	on	a	statement	that	defines	the	effect	the	policy	has	on	specific	actions	for	a	given
resource.	Even	though	the	code	might	look	daunting,	it	makes	sense	if	you	take	it	apart	and	look	at	each
element	individually.

The	hardest	part	of	creating	a	policy	is	to	define	the	Amazon	Resource	Name	(ARN).	In	this	case,	the
ARN	refers	to	AWS	and	the	API	Gateway	service	found	in	AWS.	You	can	further	refine	specific
resources.	The	resource	at	http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-
namespaces.html	tells	you	more	about	ARNs	and	furnishes	you	with	everything	needed	to	create	an
ARN.	In	addition,	you	often	find	the	ARN	listed	for	a	resource	when	you	view	that	resource’s
information,	as	shown	in	Figure	7-1.

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

FIGURE	7-1:	AWS	often	supplies	the	ARNs	you	need	in	the	console	displays.

	You	must	have	your	security	setup	in	place	before	you	try	to	create	your	API	Gateway.	Part	of
the	configuration	process	requests	this	information,	so	you	need	to	consider	security	before	you
create	an	API.	(Adding	more	security	later	means	going	back	through	the	configuration	process.)
Of	course,	this	workflow	makes	sense	because	you	don’t	want	to	create	an	API	that	anyone	can
access	until	you	get	around	to	completing	the	security	requirements.

Understanding	models
Before	anyone	can	interact	with	a	resource,	describing	the	data	format	used	by	that	resource	is	vital.	A
model	describes	the	data	format	of	the	request	or	response	body.	You	need	a	model	to	create	a	strongly
typed	SDK	for	an	API	and	use	it	to

Validate	the	data
Generate	a	mapping	template

	Creating	a	model	will	save	you	a	lot	of	time	and	reduce	the	likelihood	that	your	API	will
experience	reliability	and	security	issues.	However,	Amazon	doesn’t	require	you	to	create	a
model	to	generate	a	mapping	template,	so	the	use	of	a	model	is	optional.

Mapping	templates
The	front	end	you	create	may	not	match	the	back	end	used	to	obtain	a	response.	To	get	the	front	end	to
talk	with	the	back	end,	you	must	create	a	mapping	template	between	the	two.	The	map	transforms	the

request	body	into	a	form	that	the	back	end	understands,	and	the	response	body	into	a	form	that	the	front
end	understands,	using	a	script	that	is	formatted	in	the	Apache	Velocity	Template	Language	(VTL)
(http://velocity.apache.org/engine/devel/vtl-reference.html).	The	idea	is	to	get	the
client	talking	with	the	web	service.

A	mapping	template	follows	a	precise	pattern	of	communication.	Every	time	a	client	interacts	with
your	API,	the	following	set	of	steps	occurs:

1.	 Client	makes	request	to	Method	Request	object.	The	Method	request	object	ensures	that	the	client
request	contains	all	required	data	in	the	correct	form	and	addresses	any	security	requirements.

2.	 Method	Request	object	sends	the	request	to	the	Integration	Request	object.
3.	 Integration	Request	maps	the	request	format	to	the	form	required	by	the	API	using	the	mapping

template.
4.	 API	processes	requests	and	formulates	a	response.
5.	 Integration	Response	object	accepts	the	response	and	maps	the	response	to	the	form	required	by

the	client	using	the	mapping	template.
6.	 Method	Response	receives	the	response	from	the	Integration	response.	The	Method	Response	can

react	to	the	response	in	various	ways	and	format	the	response	for	the	client	as	needed.
7.	 Client	receives	the	response	from	Method	Response.

Creating	an	API	Gateway	using	the	console
In	this	section,	you	create	a	simple	API	by	using	one	of	the	Amazon	examples.	The	idea	is	to	help	you
get	started	using	APIs	with	a	minimum	of	fuss	so	that	you	can	see	the	API	workflow.	Later	examples
will	help	you	create	custom	APIs	so	that	you	can	see	all	the	ways	in	which	you	can	modify	API
behavior.	The	following	steps	get	you	started.

1.	 Sign	into	AWS	by	using	your	user	account.
2.	 Navigate	to	the	API	Gateway	Console	at	https://console.aws.amazon.com/apigateway/.

AWS	displays	a	welcome	message	and	displays	a	Get	Started	button	(unless	you	created	an	API
Gateway	previously).

3.	 Choose	an	API	Gateway	setup	region	from	the	Region	drop-down	list	at	the	top	of	the	page.
The	example	uses	the	Oregon	region.

4.	 Click	Get	Started.
AWS	displays	a	message	about	creating	an	example	API.	The	example	produces	a	Pet	Store	API
using	Swagger	(http://swagger.io/),	which	is	a	popular	application	for	producing	APIs.	You
can	create	your	APIs	by	using	Swagger	and	import	them	directly	into	AWS.

5.	 Click	OK.
You	see	the	display	shown	in	Figure	7-2.	Notice	that	you	can

Create	a	new	API	using	just	the	console	functionality.
Import	a	new	API	that	you	created	using	Swagger.

http://velocity.apache.org/engine/devel/vtl-reference.html
https://console.aws.amazon.com/apigateway/
http://swagger.io/

Run	the	example	API	to	see	how	API	Gateway	works.
This	example	uses	the	third	option,	Example	API.	You	can	see	the	JSON	code	used	to	create	the
example	API	below	the	three	options.	The	options	regarding	warnings	help	you	ensure	that	the	API
you	import	will	actually	work	with	Amazon.	In	most	cases,	you	want	to	enable	Fail	On	Warnings	to
ensure	that	you	don’t	import	an	invalid	API	description.

6.	 Choose	Example	API;	choose	Fail	on	Warnings;	then	click	Import.
You	see	the	Resources	view,	shown	in	Figure	7-3.	The	Navigation	pane	on	the	left	shows	you	the
kinds	of	information	that	is	available.	In	the	middle	is	a	hierarchical	view	of	the	API.	The	right
pane	shows	a	detail	view	of	the	selected	resource.	The	API	is	only	imported	at	this	point.	You	can
perform	all	sorts	of	additional	tasks,	such	as	creating	new	methods	and	resources.	You	can	also
view	the	details	of	a	particular	element,	such	as	a	method.

7.	 Click	POST	in	the	Resource	Tree.
You	see	the	POST	method	execution,	shown	in	Figure	7-4.	Note	that	the	conversation	begins	with
the	client	and	follows	the	process	mentioned	in	the	“Mapping	templates”	section,	earlier	in	this
chapter.	Each	of	the	little	bull’s-eye	dots	is	a	hint.	You	can	click	them	to	get	additional	information
about	that	element.	You	can	also	click	the	major	headings,	such	as	Method	Request,	to	learn	more
about	that	element	and	configure	it	as	part	of	working	with	the	API.	To	test	the	API,	you	click
TEST	(with	the	lightning	bolt)	in	the	Client	element,	as	described	in	the	next	step.

8.	 Click	TEST	in	the	Client	element.
You	see	the	display	shown	in	Figure	7-5.	This	page	shows	all	the	potential	elements	required	to
make	a	test	as	well	as	which	ones	you	actually	require.	For	example,	you	don’t	need	any	headers,
stage	variables,	or	client	certificates.	(A	number	of	other	potential	inputs	don’t	appear	in	the
figure.)	However,	this	example	does	require	a	Request	Body	entry	to	work	properly.

9.	 Type	the	following	code	in	the	Request	Body	field:
{"type":	"cat",	"price":	50.00}

The	JSON	request	asks	for	a	pet	of	type	cat	at	a	price	of	$50.00.
10.	 Click	Test.

You	see	output	similar	to	that	shown	in	Figure	7-6.	Note	that	you	see	the	default	headers	with	a
status	of	200	(showing	a	successful	request).	The	response	body	contains	the	original	request	and	a
message	value	of	success.	The	response	headers	show	the	kind	of	information	you	can	expect	from
this	kind	of	request.	Finally,	you	see	a	series	of	log	entries	that	tell	you	precisely	how	the	request
and	response	process	proceeded.	Now	that	you	know	the	API	works,	you	can	deploy	it.

11.	 Select	the	forward	slash	(/)	entry	in	the	Resource	Tree.
To	deploy	an	API,	you	must	select	the	root	node	of	the	Resource	Tree.

12.	 Choose	Actions   Deploy	API.
You	see	a	Deploy	API	dialog	box	like	the	one	shown	in	Figure	7-7.	You	must	describe	the	level	of
deployment	so	that	everyone	working	on	the	project	will	know	the	API’s	status.

13.	 Choose	[New	Stage]	in	the	Deployment	Stage	field.
14.	 Type	TestDeploy	in	the	State	Name	field.

You	may	optionally	include	a	stage	and	deployment	description,	but	they	aren’t	required	for	the

example.
15.	 Click	Deploy.

You	see	the	detail	information	about	the	deployment,	as	shown	in	Figure	7-8.	The	information	for
your	deployment	will	vary	from	the	information	shown	in	the	figure.	Note	especially	the	Invoke
URL	field	near	the	top.	The	example	is	now	ready	to	work	with.

FIGURE	7-2:	You	have	a	number	of	options	for	creating	a	new	API	on	AWS.

FIGURE	7-3:	The	example	shows	a	hierarchical	view	of	the	resources	after	you	import	the	API.

FIGURE	7-4:	Detail	views	show	how	various	Resource	Tree	elements	work.

FIGURE	7-5:	Performing	a	test	means	providing	required	inputs.

FIGURE	7-6:	The	testing	process	helps	you	visualize	how	the	API	will	work.

FIGURE	7-7:	After	testing,	you	can	deploy	your	API.

FIGURE	7-8:	The	deployed	API	is	ready	for	use,	but	you	can	still	change	some	configuration	settings.

It’s	time	to	see	whether	the	API	actually	works.	Open	a	new	browser	window.	Using	the	Invoke	URL
field	entry	as	a	starting	point,	add	a	question	mark	and	then	a	name/value	pair,	like	the	one	shown	here:
https://17kbeo12d7.execute-api.us-west-2.amazonaws.com/TestDeploy/pets/?type=cat.
In	this	case,	you	ask	for	all	the	cat	entries.	Figure	7-9	shows	example	output	from	this	call.

FIGURE	7-9:	Use	the	GET	method	to	ask	for	all	the	cat	entries.

https://17kbeo12d7.execute-api.us-west-2.amazonaws.com/TestDeploy/pets/?type=cat

You	can	also	see	a	specific	entry.	All	you	need	is	the	ID	value	added	to	the	URL	to	see	a	specific	entry,
as	shown	here:	https://17kbeo12d7.execute-api.us-west-
2.amazonaws.com/TestDeploy/pets/2.	The	output	appears	in	Figure	7-10.	Look	again	at	the
Resource	Tree	in	Figure	7-4,	earlier	in	the	chapter.	The	path	includes	/pets,	followed	by	/{petId}.
When	you	use	this	new	URL,	you	use	that	additional	path	rather	than	provide	a	GET	input	argument
(which	you	do	when	adding	the	?	after	/pets).

FIGURE	7-10:	Provide	an	ID	to	obtain	a	specific	entry.

	To	test	the	POST	method	easily,	you	need	a	third-party	product	such	as	Postman
(https://www.getpostman.com/).	When	using	the	POST	method,	you	use	JSON	code	just	as
you	did	when	testing	the	POST	method	during	the	client	test	earlier	in	this	section.

Accessing	an	API	Gateway	using	the	CLI
You	can	certainly	create	an	API	using	CLI,	but	using	the	GUI	to	create	the	API	is	probably	a	lot	easier
when	working	with	AWS.	However,	you	might	still	want	to	access	the	API	through	CLI	to	see	how	it
works	in	this	environment	(and	make	things	easier	for	yourself	when	you	create	applications).

A	common	thread	when	working	with	API	Gateway	CLI	commands	is	the	need	for	a	REST	API	ID	and
a	resource	ID.	Fortunately,	these	two	pieces	of	information	are	easy	to	find	as	long	as	you	know	where
to	look.	Select	the	/	entry	in	the	Resource	Tree.	You	see	the	information	shown	in	Figure	7-11.

https://17kbeo12d7.execute-api.us-west-2.amazonaws.com/TestDeploy/pets/2
https://www.getpostman.com/

FIGURE	7-11:	Obtain	the	REST	API	ID	and	resource	ID	values.

At	the	top	of	the	page,	you	see	the	following:
APIs	>	PetStore	(17kbeo12d7)	>	Resources	>	/	(4al7ycfwb6)

The	17kbeo12d7	entry	is	the	value	you	supply	to	the	--rest-api-id	argument	when	making	calls.
You	need	this	value	to	make	most	of	the	calls.	The	4al7ycfwb6	entry	is	the	value	you	supply	to	the	--
resource-id	argument	when	requested.	This	second	value	sees	use	only	with	specific	calls.

The	various	CLI	calls	for	API	Gateway	appear	at
http://docs.aws.amazon.com/cli/latest/reference/apigateway/,	and	as	you	can	see,	there
are	many	of	them.	This	section	looks	at	two	of	these	calls	because	they	provide	different	kinds	of
output.	Some	calls	output	text,	which	you	can	display	directly	in	the	command	prompt	or	terminal
window;	others	output	HTML	or	some	other	format	that	doesn’t	display	well	at	the	command	prompt.
To	see	one	of	the	former	commands	in	action,	type	aws	apigateway	get-rest-api	--rest-api-id
17kbeo12d7	and	press	Enter.	Remember	to	replace	the	--rest-api-id	argument	with	the	value	for
your	example	API.	Figure	7-12	shows	typical	output.

http://docs.aws.amazon.com/cli/latest/reference/apigateway/

FIGURE	7-12:	Obtain	information	about	the	example	API.

This	output	looks	fine	in	the	command	window.	However,	if	you	want	to	obtain	information	about	an
existing	method	resource,	you	need	some	means	to	display	HTML	as	output.	To	create	the	HTML
output,	type	aws	apigateway	get-method	--rest-api-id	17kbeo12d7	--resource-id	4al7ycfwb6	--
http-method	GET	>	Output.html	and	press	Enter.	You	must	replace	both	the	--rest-api-id	and	--
resource-id	entries	with	values	from	your	example	API.	In	addition,	the	redirection	used	for	this
example	is	for	Windows.	Make	sure	that	you	redirect	the	output	using	the	redirection	for	your	platform.
After	you	execute	the	command,	load	the	resulting	file	in	your	browser.	Figure	7-13	shows	typical
output.

FIGURE	7-13:	Display	HTML	output	in	your	browser.

Chapter	8
Developing	Web	Apps	Using	Elastic

Beanstalk
IN	THIS	CHAPTER

	Understanding	the	Elastic	Beanstalk	(EB)	feature	set
	Creating	and	deploying	an	EB	application
	Performing	application	updates
	Deleting	old	applications
	Monitoring	your	application

At	one	time,	developers	created	desktop	applications	to	harness	the	power	and	flexibility	that	desktop
systems	can	provide.	In	many	situations,	developers	still	need	this	power	and	flexibility,	but	more	and
more	application	development	occurs	on	the	web.	The	reasons	for	this	change	are	many,	but	they	all
come	down	to	convenience.	Users	want	to	use	applications	that	can	run	on	any	device,	anywhere,	and
in	the	same	way.

To	make	this	device	mobility	happen,	developers	use	web	applications	that	run	in	a	browser	or	a
browser-like	environment,	which	is	where	Elastic	Beanstalk	(EB)	comes	into	play.	Using	EB	enables
developers	to	create	applications	that	run	anywhere	on	any	device,	yet	don’t	suffer	from	problems	of
reliability	and	scalability	that	can	occur	when	using	a	company-owned	host.	In	addition,	using	EB
makes	the	development	process	significantly	faster	because	the	developer	need	not	worry	about
anything	other	than	the	code	used	to	manipulate	organizational	data.	The	first	section	of	this	chapter
explores	how	EB	makes	moving	applications	to	the	cloud	easier	for	everyone	involved.

Developers	don’t	normally	need	to	deploy	applications	in	the	production	environment,	but	you	do	need
to	deploy	them	in	the	test	environment,	so	this	chapter	shows	how	to	install	an	EB	application.	You
work	with	simple	code	in	this	chapter,	but	the	process	of	installing	the	application	is	the	same	no
matter	the	complexity	of	the	underlying	application.	The	chapter	looks	at	multiple	deployment	methods
because	you	can’t	necessarily	rely	on	any	single	method.	You	also	see	how	to	deal	with	application
configuration	issues	that	affect	how	your	application	works	and	who	can	access	it.	In	addition,	this
chapter	discusses	the	requirements	for	making	updates	and	getting	rid	of	applications	after	you	finish
using	them.

	The	deployment,	update,	and	retirement	tasks	are	an	essential	part	of	using	EB,	even	if	you
plan	to	keep	the	application	private	to	your	organization.	Developers	need	to	understand	these
tasks	as	part	of	discovering	how	to	create	efficient	designs.	The	more	efficient	the	design,	the	less
likely	administrators	and	users	are	to	encounter	problems	that	will	require	fixes	later.

Whether	your	application	is	public	or	private,	you	probably	want	to	monitor	it,	especially	when	fine-
tuning	it	during	the	development	process.	This	chapter	shows	how	to	use	native	EB	functionality	to
perform	the	task.	By	using	the	EB	monitoring	features,	you	can	integrate	all	your	application	activities
using	a	single	interface	and	ensure	tight	integration	between	the	monitoring	software	and	the
application.

Considering	Elastic	Beanstalk	(EB)	Features
EB	enables	you	to	easily	upload,	configure,	and	manage	applications	of	all	sorts.	An	application	isn’t
useful	unless	people	can	access	it	with	ease	and	make	it	perform	whatever	tasks	it’s	designed	to
perform	in	the	most	seamless	manner	possible.	Achieving	these	goals	requires	the	hosting	platform	to
support	various	programming	methodologies	on	a	variety	of	platforms	so	that	developers	can	use	the
tools	most	suited	to	a	particular	need.	When	working	with	AWS,	you	can	currently	create	web
applications	(in	the	easiest-to-access	form	available)	using	these	languages	(with	more	to	follow):

Java
.NET
PHP
Node.js
Python
Ruby
Go
Docker

The	applications	run	in	managed	containers	for	the	language	you	choose.	A	managed	container	is	one
in	which	the	host	manages	application	resources	and	ensures	that	the	application	can’t	easily	crash	the
system.	The	container	acts	as	a	shield	between	the	application	you’re	working	with	and	every	other
application	that	the	system	hosts.

EB	supports	a	number	of	platforms.	The	platform	you	choose	for	your	development	setup	should	match
the	platform	for	your	organization.	When	a	given	platform	lacks	language	support,	development	and
administration	must	decide	on	an	appropriate	mix	for	the	cloud,	which	often	has	different	requirements
than	a	local	setup.	Matching	the	language	(to	meet	developer	needs)	with	a	platform	(to	meet
administrator	needs)	on	a	host	can	prove	difficult,	but	EB	is	up	to	the	task	because	it	provides	support
for	these	web	application	platforms:

Apache
Nginx
Passenger
IIS

EB	is	designed	to	simplify	application	deployment	and	management	in	a	way	that	allows	a	developer
more	time	to	code.	The	three	cornerstones	of	EB	application	support	are	the	following:

Deployment:	Getting	the	application	onto	the	server	so	that	someone	can	use	it.
Management:	Configuring	the	application	as	people	find	problems	using	it.
Scaling:	Providing	a	good	application	experience	for	everyone	by	ensuring	that	the	application
runs	fast,	reliably,	and	without	any	security	issues.

As	part	of	this	whole	picture,	EB	also	relies	on	application	health	monitoring	through	Amazon
CloudWatch.	The	Amazon	CloudWatch	service	helps	you	determine	when	application	health	issues
require	the	host	to	make	changes	in	the	application	environment,	such	as	by	using	autoscaling	to	make
sure	that	the	application	has	enough	resources	to	run	properly.

Deploying	an	EB	Application
Before	you	can	use	your	EB	application,	you	must	deploy	it	(make	it	accessible)	on	a	server.
Deployment	involves	the	following	steps:

1.	 Creating	an	application	entry.
2.	 Uploading	the	application	to	Amazon.	You	perform	this	step	as	part	of	creating	the	application

entry.
3.	 Configuring	the	application	so	that	it	runs	as	anticipated,	which	is	also	part	of	creating	the

application	entry	on	the	first	pass,	but	you	can	also	change	the	configuration	later.
4.	 Configuring	the	application	environment	so	that	it	has	access	to	required	resources.	You	perform

the	initial	setup	while	creating	the	application	entry,	but	you	make	configuration	changes	later
based	on	the	results	of	the	monitoring	that	you	perform.

5.	 Testing	the	application	to	determine	whether	it	works	as	anticipated.

	EB	comes	with	no	additional	charge;	however,	you	must	pay	for	any	resources	that	your
application	uses.	Be	sure	to	keep	this	fact	in	mind	as	you	work	through	the	chapter.	The	examples
don’t	require	much	in	the	way	of	resources,	but	you	do	need	to	pay	for	them,	which	means	that
you	may	need	permission	to	install	the	applications	before	you	proceed.	The	chapter	structure	is
such	that	you	can	simply	follow	along	with	the	text	if	desired.	The	following	sections	describe
how	to	deploy	an	EB	application.

Creating	the	application	entry
Before	you	do	anything	else,	you	need	to	define	an	application	entry	in	order	to	run	an	application
using	EB.	The	application	entry	acts	as	a	sort	of	container	for	holding	the	application.	AWS	provides	a
number	of	methods	for	creating	application	entries.	The	following	sections	describe	each	of	these
methods	and	explain	the	reasoning	for	using	each	approach	in	specific	situations.

Using	the	console
The	console	approach	to	creating	an	application	entry	offers	the	greatest	level	of	support,	which	makes
creating	basic,	one-time	application	entries	easy.	However,	using	the	console	isn’t	necessarily	the

fastest	approach.	Also,	you	can’t	script	it,	and	finding	some	of	the	details	can	be	difficult.	The
following	steps	describe	how	to	create	the	application	entry	using	the	console	approach:

1.	 Sign	in	to	AWS	using	your	user	account.
2.	 Navigate	to	the	Elastic	Beanstalk	Console	at

https://console.aws.amazon.com/elasticbeanstalk.
You	see	a	Welcome	page	that	contains	interesting	information	about	Elastic	Beanstalk	and	provides
links	to	additional	information	and	sample	applications.	In	the	upper-right	corner,	you	see	Create
New	Application.

	At	the	bottom	of	the	page,	you	see	the	Select	a	Platform	list	box,	shown	in	Figure	8-1.	This
list	box	lets	you	create	a	test	setup	that	requires	only	a	single	click.	However,	the	default	options
include	configuring	your	environment	to	use	both	load	balancing	and	autoscaling.	Consequently,
when	you	try	to	complete	the	setup,	you	see	an	error	message	stating	that	the	application	can’t	start
until	you	upgrade	your	EC2	configuration.	The	upgrade	will	cost	you	money,	and	you	don’t	actually
require	the	additional	functionality	for	the	purposes	of	this	book.

3.	 Click	Create	New	Application.
You	see	the	Application	Information	page,	shown	in	Figure	8-2.	You	need	to	provide	an
application	name	(identity)	and,	optionally,	describe	it.

4.	 Type	TestApp	in	the	Application	Name	field,	type	A	test	application.	in	the	Description	field,
and	then	click	Next.
You	see	the	New	Environment	page,	shown	in	Figure	8-3.	EB	provides	two	default	environments:

Web	Server	Environment:	Lets	you	run	web	applications	using	any	of	the	languages	that
support	web	development.
Worker	Environment:	Creates	a	background	application	that	you	can	call	on	in	a	variety	of
ways.	Background	applications	don’t	provide	user	interfaces,	so	you	normally	use	this
option	to	create	support	for	another	application.

5.	 Click	Create	Web	Server.
EB	asks	you	to	configure	the	environment	type,	as	shown	in	Figure	8-4.	The	Preconfigured
Configuration	field	contains	a	listing	of	languages	that	you	can	use.	The	Environment	Type	field
defines	how	to	run	the	application:	single	instance	or	using	both	load	balancing	and	autoscaling.

6.	 Choose	PHP	in	the	Preconfigured	Configuration	field,	choose	Single	Instance	in	the
Environment	Type	field,	and	then	click	Next.
You	see	options	for	an	application	source,	as	shown	in	Figure	8-5.	Normally	you	upload	your	own
application	or	rely	on	an	application	defined	as	part	of	a	Sample	Storage	Service	(S3)	setup.
However,	because	this	is	an	example,	the	next	step	will	ask	you	to	use	a	sample	application.
Working	with	sample	applications	makes	experimenting	easier	because	you	know	that	nothing	is
wrong	with	the	application	code	to	cause	a	failure.

7.	 Select	the	Sample	Application	option	and	click	Next.

https://console.aws.amazon.com/elasticbeanstalk

EB	displays	the	Environment	Information	page,	shown	in	Figure	8-6.	You	must	create	a	unique
environment	name	for	your	application.

8.	 Type	MyCompany-TestEnv	in	the	Environment	Name	field.
Note	that	EB	automatically	provides	an	Environment	URL	field	value	for	you.	In	most	cases,	you
want	to	keep	that	URL	to	ensure	that	the	URL	will	work	properly.	The	Environment	URL	field
automatically	provides	the	location	of	your	EC2	instances	to	run	the	web	application,	so	normally
you	won’t	need	to	change	this	value,	either.

9.	 Click	Check	Availability.
The	square	around	the	Environment	URL	field	changes	to	green	if	the	check	is	successful.
Otherwise,	you	need	to	provide	a	different	Environment	Name	field	entry.

10.	 Type	A	test	environment.	in	the	Description	field	and	then	click	Next.
EB	asks	about	the	use	of	additional	resources,	as	shown	in	Figure	8-7.	Remember	that	additional
resources	generally	incur	fees,	so	keep	these	options	blank	when	working	with	a	test	application.
The	RDS	DB	option	creates	a	link	to	a	database	to	use	with	the	application.	The	VPC	option
creates	a	Virtual	Private	Cloud	(VPC)	to	run	the	application.

11.	 Click	Next.
At	this	point,	you	need	to	define	the	configuration	details,	shown	in	Figure	8-8.	The	options	you
use	depend	on	how	you	want	to	run	the	application.	However,	the	steps	tell	you	how	to	maintain	a
free	setup.	Using	other	Instance	Type	field	settings	could	incur	costs.

12.	 Choose	t2.micro	in	the	Instance	Type	field	and	the	key	pair	(defined	in	the	“Generating
security	keys”	section	of	Chapter	6)	that	you	want	to	use.

13.	 (Optional)	Type	your	email	address	in	the	Email	Address	field.
14.	 Choose	Basic	in	the	System	Type	field	(Health	Reporting	section)	and	then	click	Next.

EB	asks	whether	you	want	to	define	Environment	Tags.	These	are	key	value	pairs	used	to	help
configure	your	application.	The	sample	application	doesn’t	require	any	tags.

15.	 Click	Next.
You	see	the	Environment	Tags	page,	shown	in	Figure	8-9.	This	page	can	become	important	to
developers	who	need	to	configure	environment	tags	as	part	of	an	application	setup.	The	tags	use
name	value	pairs,	just	as	you	use	when	configuring	your	environment	variables	in	any	localized
operating	system.	This	example	doesn’t	require	any	tags,	but	you	should	keep	them	in	mind.

16.	 Click	Next.
The	Permissions	page,	shown	in	Figure	8-10,	contains	options	for	creating	or	using	permissions.
The	test	setup	doesn’t	contain	any	permissions,	so	you	won’t	see	any	options	in	the	Instance	Profile
or	Service	Role	fields.	If	you	had	already	defined	another	application,	these	fields	would	allow
you	to	reuse	those	existing	permissions.	EB	creates	a	set	of	default	permissions	for	you,	which	you
can	later	modify	as	needed.

17.	 Click	Next.
You	see	a	Review	page	that	contains	all	the	settings	made	so	far	in	the	procedure.	Check	the
settings	to	ensure	that	you	made	the	entries	correctly.

18.	 Click	Launch.

You	see	EB	launching	your	application,	as	shown	in	Figure	8-11.	Be	patient:	This	process	can
require	several	minutes	to	complete.

FIGURE	8-1:	Avoid	using	the	one-click,	Select	a	Platform	option	whenever	possible.

FIGURE	8-2:	Identify	your	application	and	describe	it.

FIGURE	8-3:	Choose	an	application	environment.

FIGURE	8-4:	Define	the	application	environment	type.

FIGURE	8-5:	Specify	the	source	of	the	application	code.

FIGURE	8-6:	Provide	a	name	for	the	application	environment.

FIGURE	8-7:	Avoid	using	additional	resources	unless	you	actually	need	them.

FIGURE	8-8:	Specify	the	instance	environment	for	running	the	application.

FIGURE	8-9:	Define	any	environment	tags	needed	to	support	your	application.

FIGURE	8-10:	The	Permissions	page	lets	you	reuse	permissions	as	needed.

FIGURE	8-11:	Wait	for	the	application	to	deploy.

	You	can	find	some	sample	applications	at
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/RelatedResources.html.
Just	download	the	application	and	then	use	it	as	part	of	following	the	exercises	in	this	section	and
the	sections	that	follow.	(The	“Installing	Node.js”	section	of	Chapter	5	discusses	how	to	obtain	a
copy	of	Node.js	and	install	it	on	your	system	when	needed.	However,	you	don’t	need	it	for	the
example	in	this	chapter.)	The	sample	applications	cover	a	number	of	the	languages	and	platforms,
but	not	all	of	them.	If	you	download	an	application	and	install	it	using	the	techniques	found	in	this
chapter,	you	must	also	pay	for	resources	that	the	application	requires	to	run.

Installing	EB	CLI
The	“Installing	the	Command	Line	Interface	Software”	section	of	Chapter	5	discusses	how	to	install
the	basic	AWS	CLI	software.	In	fact,	you	use	this	version	to	interact	with	S3	in	that	chapter	in	the
“Configuring	S3	Using	the	CLI”	section.	In	order	to	work	with	EB,	you	need	an	EB	version	of	CLI.	To
obtain	the	needed	software,	open	a	command	prompt	or	terminal	window,	type	pip	install	--upgrade
awsebcli,	and	press	Enter.	You	see	a	relatively	long	list	of	messages	followed	by	a	success	message.

To	test	your	setup,	type	eb	--help	and	press	Enter.	Figure	8-12	shows	the	help	screen	you	see	after	a
successful	installation.

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/RelatedResources.html

FIGURE	8-12:	Check	your	eb	CLI	installation	to	ensure	success.

Before	you	can	use	eb	to	perform	useful	work,	you	must	initialize	it.	The	following	steps	get	you
started.

1.	 Type	eb	init	and	press	Enter.
The	wizard	asks	you	to	select	a	region.

2.	 Type	the	number	corresponding	to	the	region	you	want	to	use	and	press	Enter.
The	book	uses	us-west-2	(Oregon),	which	is	selection	3.	You	need	to	choose	the	number
corresponding	to	the	region	you	select	earlier	in	the	chapter.	If	you	followed	the	process	in	the
“Using	the	console”	section,	earlier	in	this	chapter,	you	see	TestApp	listed	as	one	of	the
application	choices,	as	shown	in	Figure	8-13.	The	remaining	steps	assume	that	you	did	create	the
application	and	are	choosing	TestApp	as	your	application.	Creating	a	second	application	will
incur	costs,	so	use	the	existing	application	if	possible.

3.	 Type	an	application	number	and	press	Enter.
The	eb	utility	continues	the	configuration	process.	Unless	you	have	source	control	setup,	the
process	ends	here.	Otherwise,	you	need	to	follow	the	steps	required	to	configure	your	particular
kind	of	source	control.

FIGURE	8-13:	Choose	an	existing	application	or	create	a	new	one.

Using	the	EB	CLI
After	you	install	and	configure	eb	CLI,	you	can	perform	all	the	same	tasks	with	it	as	you	do	by	using
the	console.	The	difference	for	a	developer,	of	course,	is	that	you	can	now	script	your	tasks.	For
example,	to	see	a	list	of	all	EB	environments,	you	type	eb	list	and	press	Enter.	The	output	shows	the
environment	you	created	in	the	“Using	the	console”	section	of	the	chapter.

	You	can	start	with	a	simple	command	and	then	refine	it.	If	you	want	to	know	what	refinements
are	available,	add	the	--help	argument	after	a	command.	For	example,	eb	list	--help	shows
the	optional	arguments	for	the	list	command.

Using	eb	isn’t	limited	to	the	AWS	console	or	the	command	line,	either.	For	example,	when	you	type	eb
open	and	press	Enter,	you	see	the	EB	sites	opened	in	a	browser.	If	you	want	to	see	a	specific	site,	you
need	to	add	the	environment	name,	such	as	MyCompany-TestEnv,	to	the	command.	You	can	find	a	list
of	eb	CLI	commands	at	http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-cmd-
commands.html.

Performing	tasks	programmatically
Another	way	to	perform	tasks	is	by	using	programming	languages	such	as	Python.	What	you	need	is
access	to	an	AWS	SDK	for	the	language.	In	the	case	of	Python,	you	use	boto.	(You	can	access	this
example	code	in	the	AWS4D4D;	08;	EB	Check.ipynb	file	for	this	chapter	in	the	downloadable	source
code	provided	for	this	book;	see	details	in	the	Introduction.)	The	code	begins	by	importing	the
required	library	and	then	creating	a	client	to	use	it.

import	boto3

client	=	boto3.client('elasticbeanstalk')

After	you	gain	access	to	EB,	you	can	perform	the	same	sorts	of	tasks	that	you	can	at	the	console	or	by
using	CLI.	For	example,	the	following	code	lists	all	of	the	applications	available	to	you,	unless	you
specify	a	particular	application:

client.describe_applications()

The	output	is	comprehensive,	telling	you	all	about	the	application	so	that	you	can	perform	additional
tasks.	In	addition	to	the	application	name,	you	also	discover	details	such	as	when	you	created	the
application	and	any	description	you	supplied	with	it.	You	can	find	a	list	of	available	methods	at
https://boto3.readthedocs.io/en/latest/reference/services/elasticbeanstalk.html.

Testing	the	application	deployment
After	you	complete	the	steps	in	the	“Using	the	console”	section	of	the	chapter,	you	have	an	application
running.	Look	again	at	Figure	8-11	to	see	the	URL	field	entry	near	the	top	of	the	page.	(It’s	in	really
small	print,	so	you	might	have	to	look	hard	to	see	it.)	Click	this	link	to	see	your	application	running.
The	sample	PHP	application	displays	the	page	shown	in	Figure	8-14.

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-cmd-commands.html
https://boto3.readthedocs.io/en/latest/reference/services/elasticbeanstalk.html

FIGURE	8-14:	The	deployed	application	works	like	any	other	web	application.

Setting	application	security
Any	code	you	deploy	using	EB	becomes	immediately	public	at	the	URL	provided	in	the	URL	field
unless	you	change	the	security	rules.	This	means	that	you	really	do	need	to	verify	that	the	page	is	safe
to	display	before	you	deploy	it.	However,	you	can	also	make	the	page	private	by	following	these
steps:

1.	 Choose	Services   EC2	from	the	menu	at	the	top	of	the	page.
You	see	the	EC2	Dashboard	page.

2.	 Choose	Network	&	Security   Security	Groups	from	the	Navigation	pane.
EC2	displays	a	list	of	security	groups,	as	shown	in	Figure	8-15.	The	selected	security	group	in	the
figure	is	the	one	used	with	EB.	If	you	followed	the	procedure	in	the	“Creating	the	application
entry”	section,	earlier	in	this	chapter,	you	should	see	a	security	group	with	a	similar	name.

3.	 Select	the	security	group	entry	for	EB	configuration	and	choose	Actions   Edit	Inbound
Rules.
EC2	displays	the	Edit	Inbound	Rules	dialog	box,	shown	in	Figure	8-16.	You	can	change	any
configuration	option	for	the	security	group	that	will	modify	the	way	in	which	incoming	requests
work.	For	example,	you	can	change	the	HTTP	type	to	HTTPS	to	create	secure	access	to	the	page.
However,	in	this	case,	you	can	use	a	simpler	method	to	secure	access	to	the	page	in	a	reasonable
way:	Simply	disallow	access	from	sources	other	than	your	system.

4.	 Choose	My	IP	in	the	Source	field	for	both	HTTP	and	SSH	access	of	the	security	group.
EC2	modifies	the	rules	as	expected.

	To	make	this	setup	work,	you	must	also	provide	access	to	the	website	to	the	instance

security	group.	Otherwise,	when	you	attempt	to	perform	updates,	the	updates	will	fail.
5.	 Click	Add	Rule.

You	see	a	new	rule	added	to	the	list.
6.	 Choose	All	Traffic	in	the	Type	field	and	All	in	the	Protocol	field.

These	two	settings	provide	complete	access	to	the	security	group.
7.	 Choose	Custom	in	the	Source	field	and	type	sg	in	the	text	field	after	it.

You	see	a	listing	of	security	groups	for	your	server	as	shown	in	Figure	8-17.	A	source	can	consist
of	a	Classless	Inter-Domain	Routing	(CIDR)	address,	IP	address,	or	security	group	ID.	Typing	sg
tells	EC2	that	you	want	to	use	a	security	group.	Note	that	one	of	the	security	groups	in	the	list
specifically	mentions	the	AWSEBSecurityGroup,	which	is	the	security	group	that	you	want	to	use.

8.	 Click	the	security	group	for	the	website	instance	in	the	list.
The	security	group	appears	in	the	Source	field.

9.	 Click	Save.
The	inbound	security	rules	now	prevent	access	to	the	site	by	any	entity	other	than	the	website
instance	or	you.

FIGURE	8-15:	The	EC2	security	groups	contain	the	security	group	used	to	configure	EB.

FIGURE	8-16:	Modify	the	rules	to	ensure	that	access	remains	restricted.

FIGURE	8-17:	Choose	an	existing	security	group	to	allow	instance	access	to	your	EB	setup.

	The	IP	address	supplied	when	you	choose	My	IP	in	the	Source	field	uses	the	IP	address	of
your	current	location.	If	other	people	use	the	same	router	(and	therefore	the	same	IP	address),	they
also	have	access	to	the	website.	Consequently,	setting	the	inbound	rules	does	help	provide
security,	but	only	a	certain	level	of	security.	In	addition,	the	IP	address	can	change	when	you	reset
the	router	and	then	reconnect	to	the	Internet	provider.	Consequently,	you	may	find	that	you	lose
access	to	the	test	site	you’ve	created	because	of	the	change	in	IP	address.	If	you	suddenly	find	that
you	have	lost	access,	verify	that	your	IP	address	hasn’t	changed.

Configuring	the	application
You	can	modify	the	application	EB	application	configuration	as	needed.	You	initially	set	all	these
configuration	options	during	the	creation	process,	but	getting	the	settings	correct	at	the	outset	isn’t
always	possible.	Simply	select	the	Configuration	entry	in	the	EB	Navigation	pane	and	you	see	the
listing	of	application	configuration	entries,	as	shown	in	Figure	8-18.

FIGURE	8-18:	Using	the	configuration	entries	to	change	how	your	application	runs.

To	change	a	configuration	option,	click	the	button	next	to	the	heading,	such	as	Scaling,	that	you	want	to
modify.	You	see	a	new	page	that	contains	the	configuration	options.	After	you	make	the	configuration
changes,	click	Apply	to	make	them	active	or	click	Cancel	when	you	make	a	mistake.

Working	with	application	environments
The	application	environments	appear	on	the	initial	EB	environments	page,	shown	in	Figure	8-19.	An
application	can	have	multiple	environments	so	that	you	can	test	it	under	multiple	conditions.	The
capability	to	use	multiple	environments	enables	you	to	perform	extensive	testing	to	find	the	correct
environment	—	the	one	that	serves	application	users	the	best	for	the	lowest	possible	cost.

FIGURE	8-19:	Application	environments	control	how	your	application	runs.

The	commands	for	working	with	a	new	environment	or	interacting	with	multiple	environments	appear
in	the	Actions	menu	on	this	initial	page	in	the	GUI.	When	working	on	this	page,	you	can	create	a	new
environment	(and	use	an	existing	application	in	it),	restore	a	terminated	environment,	swap	the	URLs
used	to	access	an	environment,	or	delete	an	application.	The	graphic	shows	you	some	essential	basics
about	the	environments.	For	example,	when	you	see	a	green	box,	you	know	that	the	environment	is
operating	as	expected	without	fault.

	Swapping	environment	URLs	is	an	essential	environment	management	technique	for
developers.	You	can	test	a	new	configuration	without	telling	anyone	about	it	by	swapping	the
active	URL	for	one	that	isn’t	in	use.	The	users	will	see	the	new	environment,	but	not	really	know
that	the	new	environment	is	in	place.	The	feedback	you	receive	in	this	case	is	unbiased.	Yes,	the
user	can	see	that	something	has	changed,	but	because	the	change	isn’t	broadcast,	the	feedback
reflects	actual	changes	in	functionality	rather	than	biased	input	that’s	affected	by	knowledge	of	the
change.

To	interact	with	the	environment	in	a	meaningful	way,	you	must	click	its	entry	on	this	main	page.	The
Actions	menu	on	the	environment’s	page	contains	options	for	loading	a	configuration,	saving	a
configuration,	swapping	the	URLs	used	to	access	environments,	cloning	an	environment	(producing	an
exact	copy),	rebuilding	an	environment,	and	terminating	an	environment.	The	point	is	that	these	options
all	deal	with	a	specific	environment	rather	than	environments	as	a	whole.

	This	is	one	case	in	which	using	EB	CLI	is	definitely	faster	than	working	with	the	GUI	because

you	don’t	spend	nearly	so	much	time	trying	to	figure	out	where	to	execute	a	command.	You	can
find	a	list	of	environment	management	commands	for	EB	CLI	at
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-

started.html.	For	example,	to	obtain	the	status	of	all	your	environments,	type	eb	status	and
press	Enter	at	the	command	prompt.	You	see	the	output	shown	in	Figure	8-20.	The	textual	output
is	actually	easier	to	interact	with,	especially	if	you	happen	to	be	color-blind.	You	can	obtain
additional	information	using	the	eb	status	--verbose	command.	If	you	manage	a	large	number
of	environments,	use	the	--region	argument	to	limit	the	number	of	outputs.

FIGURE	8-20:	Using	the	command	line	is	definitely	faster	than	the	GUI	when	working	with	environments.

Updating	an	EB	Application
Applications	don’t	exist	in	a	vacuum:	organizational	and	other	requirements	change,	environments
evolve,	user	needs	change,	and	so	on.	As	the	application	functionality	and	operation	changes,	so	must
the	application	configuration	and	setup.	The	environmental	needs	change	as	well.	In	other	words,	you
must	perform	an	EB	update	to	keep	the	application	current	so	that	users	can	continue	using	it.	The
following	sections	describe	the	kinds	of	changes	you	need	to	consider	during	an	update.

Getting	the	sample	code	and	making	a	change
You’re	extremely	unlikely	to	upload	just	one	version	of	your	application.	An	application	actually	has	a
life	cycle,	and	change	is	simply	part	of	the	process.	Making	changes	using	the	sample	application
means	getting	the	current	code	and	then	doing	something	with	it.	The	following	steps	help	you	get	a
copy	of	the	current	application	and	perform	a	small	change	on	it.	(You	can	access	the	modified	version
of	the	example	code	in	the	php-v2	folder	for	this	chapter	in	the	downloadable	source	code	provided
with	this	book,	as	explained	in	the	Introduction.)

1.	 Download	the	php-v1.zip	file	found	at
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/RelatedResources.html.

2.	 Expand	the	archive	into	its	own	folder	(directory)	on	your	hard	drive.
You	see	a	number	of	application	files,	including	index.php.	The	index.php	file	contains	the	code
used	to	display	the	web	page	shown	previously	in	Figure	8-14.	Modifying	the	code	changes	how

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-getting-started.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/RelatedResources.html

the	web	page	appears.
3.	 Open	the	index.php	file	using	any	text	editor.

	The	text	editor	must	output	pure	text	files	without	any	formatting.	For	example,	Notepad	on
Windows	systems,	gedit	on	Linux	systems,	and	TextEdit	on	Mac	systems	are	all	examples	of	pure
text	editors.	On	the	other	hand,	Microsoft	Word,	LibreOffice,	and	FreeOffice	are	all	examples	of
editors	that	you	can’t	use	to	make	modifications	to	PHP	files.

4.	 Locate	the	line	that	reads	<h1>Congratulations!</h1>	and	replace	it	with	<h1>Hello
There!</h1>.
The	change	you’ve	just	made	modifies	the	greeting	you	see.	It’s	a	small	change,	but	it	serves	to
demonstrate	how	modifications	typically	work.

5.	 Save	the	file.
The	modified	file	is	now	ready	to	upload	to	Amazon.

Uploading	the	modified	application
To	see	any	coding	changes	you	make,	you	must	upload	the	changes	to	AWS.	It	doesn’t	matter	how
complex	the	application	becomes:	At	some	point,	you	use	the	same	process	to	upload	changed	files.
The	following	steps	describe	how	to	perform	this	task:

1.	 Place	the	files	for	your	application	into	an	archive.
The	normal	archive	format	is	a	.zip	file.

2.	 Open	the	application	dashboard	by	clicking	its	entry	in	the	initial	EB	page.
You	see	options	for	working	with	the	application,	as	shown	in	Figure	8-21.

3.	 Click	Upload	and	Deploy.
You	see	an	Upload	and	Deploy	dialog	box	like	the	one	shown	in	Figure	8-22.

4.	 Click	Browse.
You	see	a	File	Upload	window	consistent	with	your	platform	and	browser.

5.	 Select	the	file	containing	the	modified	application	code	and	click	Open.
EB	displays	the	filename	next	to	the	Browse	button.

6.	 Type	Changed-Greeting	in	the	Version	Label	field	and	then	click	Deploy.
EB	displays	messages	telling	you	that	it’s	updating	the	environment.	Be	patient;	this	process	can
take	a	few	minutes	to	complete.	At	some	point,	the	application	indictor	turns	green	again	(and	you
see	the	check	mark	icon),	which	means	that	you	can	test	the	application	using	the	same	procedure
described	in	the	“Testing	the	application	deployment”	section,	earlier	in	this	chapter.	What	you
should	see	is	a	change	in	greeting	from	“Congratulations!”	to	“Hello	There!”

FIGURE	8-21:	The	application	dashboard	lets	you	perform	application-related	tasks.

FIGURE	8-22:	Use	the	Upload	and	Deploy	dialog	box	to	upload	new	application	versions.

Switching	application	versions
You	now	have	two	application	versions	uploaded	to	the	EC2	instance.	In	some	cases,	you	may	have	to
switch	between	application	versions.	Perhaps	a	fix	in	a	new	version	really	didn’t	work	out,	so	you

need	to	go	to	an	older,	more	stable,	version.	The	following	steps	describe	how	to	switch	between
versions:

1.	 Click	Upload	and	Deploy.
Look	again	at	Figure	8-22.	Notice	the	Application	Versions	Page	link.	This	page	contains	a	listing
of	all	the	versions	available	for	use.

2.	 Click	the	Application	Versions	Page	link.
You	see	the	Application	Versions	page,	shown	in	Figure	8-23.	The	last	field	of	the	table	shows
where	each	version	is	deployed.	In	this	case,	Changed-Greeting	is	deployed,	but	Sample
Application	isn’t.

3.	 Check	the	Sample	Application	version	and	click	Deploy.
EB	displays	the	deployment	options,	shown	in	Figure	8-24.	The	fields	contain	the	same
environment	settings	as	before.	You	don’t	want	to	change	these	settings	unless	you	want	to	create	a
new	environment.

4.	 Click	Deploy.
EB	displays	messages	telling	you	that	it’s	updating	the	environment.	At	some	point,	the	application
indictor	turns	green	again,	which	means	that	you	can	test	the	application	using	the	same	procedure
found	in	the	“Testing	the	application	deployment”	section,	earlier	in	this	chapter.

FIGURE	8-23:	The	example	now	has	two	available	versions.

FIGURE	8-24:	You	specify	deployment	options	as	part	of	making	an	update	available.

Removing	Unneeded	Applications
EB	applications	get	old	just	as	any	other	application	does.	Software	becomes	outdated	to	the	point	at
which	additional	updates	become	counterproductive	and	expensive;	creating	a	new	application
becomes	easier.	When	an	application	gets	old	enough,	you	need	to	shut	it	down	in	a	graceful	manner
and	remove	it	after	training	users	to	use	whatever	new	application	you	have	in	place.

	Transitions	from	one	application	to	another	are	one	of	the	most	difficult	development	tasks.
Foreseeing	everything	that	can	go	wrong	is	difficult,	plus	transitions	add	layers	of	complexity	that
developers	may	not	understand.	This	chapter	can’t	provide	you	with	everything	needed	to
perform	a	transition,	but	it	does	show	you	the	mechanics	of	removing	an	EB	application	you	no
longer	need.	However,	before	you	remove	the	application,	make	sure	that	you	have	the	transition
process	well	planned	and	have	backup	processes	in	place	for	when	things	go	wrong.

To	remove	an	application	from	an	instance,	you	select	its	entry	in	the	Application	Versions	page	(refer
to	Figure	8-23)	and	click	Delete.	However,	before	you	delete	an	application,	be	sure	to	have	another
version	of	the	application	deployed	to	the	instance,	or	site	users	may	suddenly	find	that	they	can’t
access	your	site.

To	delete	an	entire	application,	including	all	the	versions,	select	the	Environments	page,	shown
previously	in	Figure	8-19.	Choose	Actions   Delete	Application	to	remove	the	entire	application.
Removing	the	application	doesn’t	remove	the	EC2	instance.

Monitoring	Your	Application	Using	Amazon
CloudWatch

Monitoring	lets	you	determine	whether	the	application	environment	is	sufficient	for	your	application.
For	example,	you	may	decide	that	you	require	a	different	instance	type	because	of	the	amount	of	traffic.
To	monitor	your	application,	choose	the	Monitoring	option	in	the	Navigation	pane.	EB	displays	the
information	shown	in	Figure	8-25.

FIGURE	8-25:	Monitor	your	application	to	determine	when	it	requires	environment	changes.

As	shown	in	Figure	8-25,	the	test	application	uses	hardly	any	of	the	resources	provided	to	it,	so	you
don’t	need	to	make	any	changes.	Of	course,	this	is	an	expected	outcome	given	that	you’re	the	only	one
with	access	to	the	application.	The	line	graphs	below	the	text	output	show	graphically	how	many
resources	your	application	uses.	You	can	also	change	the	monitoring	criteria	for	longer	monitoring
sessions	(to	show	generalized	trends	over	a	24-hour	period,	for	example).

Each	of	the	graphs	in	Figure	8-25	has	a	button	associated	with	it.	When	you	click	the	button,	you	see	a
page	for	creating	an	alarm,	as	shown	in	Figure	8-26.	Each	alarm	entry	must	have	a	unique	name.	You

then	provide	a	monitoring	period,	metric-specific	thresholds,	and	notification	information.	When	you
complete	the	form,	click	Add.	You	can	see	the	alarms	you	set	for	your	EB	application	by	choosing
Alarms	in	the	Navigation	pane.	When	an	alarm	occurs,	a	message	about	it	comes	to	you	through	the
notification	method	(such	as	an	email	message)	that	you	selected.

FIGURE	8-26:	Set	alarms	as	needed	to	prevent	failures	because	of	lack	of	resources.

Chapter	9
Developing	Batch	Processes	and	Scripts

IN	THIS	CHAPTER
	Choosing	batch-processing	and	scripting	options
	Using	localized	batch	processing
	Creating	scripts	and	using	localized	script	execution
	Using	aws-shell

The	chapters	up	to	this	point	in	the	book	rely	on	performing	tasks	one	at	a	time	using	a	variety	of
methods	that	include	the	console	GUIs,	Command	Line	Interface	(CLI),	and	specially	designed
applications.	That	is,	you	perform	tasks	one	at	a	time	without	any	chance	of	automating	the	task.	That’s
the	best	approach	while	you’re	discovering	how	the	various	services	work.	However,	after	you	know
how	the	services	work	and	need	to	perform	tasks	quickly,	you’re	ready	to	add	automation.

You	can	automate	AWS	tasks	using	two	techniques:	batch	processing	(requesting	that	AWS	perform	a
series	of	related	tasks	on	a	schedule)	and	scripting	(writing	code	to	perform	unrelated	tasks	at	any
desired	time).	This	chapter	begins	by	reviewing	the	options	you	have	for	performing	both	levels	of
automated	processing.

Most	developers	use	automation	to	perform	tasks,	so	you	might	already	have	tools	that	you	like	using.
The	next	three	sections	of	the	chapter	discuss	methods	of	performing	both	batch	processing	and
scripting	using	traditional	methods.	Your	specific	method	might	not	appear	in	the	chapter,	but	the	basic
techniques	for	performing	localized	batch	and	script	processing	remain	essentially	the	same.

It	doesn’t	take	long	for	popular	environments	such	as	AWS	that	have	enough	complexity	to	attract
custom	tool	development.	The	final	section	of	the	chapter	helps	you	work	with	aws-shell,	a	custom
tool	developed	by	Amazon	developers	to	make	working	with	AWS	services	considerably	easier.
Because	aws-shell	is	custom	built	to	work	with	AWS,	it	includes	many	automation	features	that	your
favorite	tool	doesn’t	have.	This	final	section	helps	you	understand	the	benefits	of	using	aws-shell	but
doesn’t	seek	to	move	you	from	your	favorite	tool	to	something	that	might	seem	unfamiliar	or	less
useful.

Considering	the	Batch-Processing	and	Script
Options

Batch	processing	and	scripting	both	have	the	same	essential	focus:	to	automate	tasks.	To	be
productive,	developers	need	some	way	to	automate	tasks,	which	allows	a	focus	on	unique
development	needs.	However,	batch	processing	and	scripting	go	about	the	automation	process	in
different	ways,	and	they	each	have	a	different	place	in	the	developer’s	toolbox.	The	following	sections
discuss	differences	between	batch	processing	and	scripting,	and	help	you	understand	the	role	of	each.

In	addition,	you	consider	the	options	available	for	accomplishing	each	automation	type.

Defining	the	difference	between	batch	processing	and	scripting
Batch	processing	and	scripting	have	different	purposes	when	it	comes	to	working	with	AWS	(or	any
other	cloud-based	application	strategy	for	that	matter).	Here’s	a	basic	summary	of	the	differences
between	the	two:

Batch	processing:	Uses	a	data	focus	to	manage	data	directly	either	online	or	offline.	The	purpose
of	batch	processing	is	to	manipulate	the	data	in	some	way	to	make	it	easier	to	process.	For
example,	updating	the	data	with	the	latest	numbers	requires	a	batch	process.	You	can	also	use	batch
processing	for	data	shaping.	Removing	redundant	records	or	filling	in	missing	data	also	works
well	as	a	batch	process.	The	point	is	that	batch	processing	focuses	on	data	manipulation	using
repetitive	methodologies.

	Batch	processing	does	have	some	specific	characteristics.	Developers	often	associate
batch	processes	with	highly	variable	usage	patterns	that	have	significant	usage	peaks.	For	example,
end-of-the-month	data	processing	falls	into	this	category.	The	batch	process	is	the	same	each
month,	but	the	pattern	can	vary	significantly	depending	on	the	amount	of	data	to	process	and	any
special	requirements	(such	as	the	addition	of	year-end	processing).	A	batch-processing	scenario
can	also	require	a	complex	setup	using	multiple	AWS	services	to	keep	track	of	jobs,	provide	job
status	updates,	track	job	performance,	and	automate	fault	tolerance	by	automatically	resubmitting
failed	jobs.
Scripting:	Uses	a	task	focus	to	accomplish	goals	that	may	not	directly	change	data.	For	example,
measuring	application	efficiency	or	adding	new	application	modules	both	work	as	scripted	tasks.
Most	scripts	run	in	real	time,	but	you	can	also	schedule	scripts	to	run	later.	Scripts	tend	to	provide
greater	flexibility	than	batch	processes,	but	scripts	also	require	more	work	to	create.	Scripts	offer
a	task-specific	approach	to	perform	both	application	and	data	manipulation	using	flexible
methodologies.

	Scripting	solutions	tend	to	handle	uncertainty	better	than	batch	solutions.	When	performing
a	batch	task,	you	know	that	certain	data	will	require	manipulation	at	given	times	to	meet	specific
goals.	A	scripting	scenario	may	handle	uncertain	data	at	unusual	intervals	to	meet	goals	based	on
conditions,	some	of	which	are	unforeseen.	For	example,	you	don’t	create	new	users	every	day,	and
the	data	and	requirements	for	adding	a	user	changes	over	time;	consequently,	adding	users	is	a	task
that	you	handle	better	using	scripts.
Overlapping	and	Combining:	As	with	everything,	no	absolute	rule	exists	saying	that	you	must	use
a	particular	approach	for	a	particular	need.	For	example,	it’s	perfectly	acceptable	to	perform	ad
hoc	monitoring	using	a	batch	process	or	data	manipulation	using	scripting	approaches.	Often,	the
best	approach	is	the	one	that	you’re	most	familiar	with	and	that	allows	you	to	perform	the	task	most
quickly.	In	addition,	you	must	consider	the	availability	of	tools	and	the	costs	involved	in
automating	the	task.	You	may	also	find	that	you	need	to	combine	scripting	and	batch	processing,

creating	another	type	of	overlap	between	the	two.	For	example,	you	might	create	a	script	that	calls
on	a	batch	file	and	then	schedule	that	script	to	run	at	a	particular	time	each	day.

Understanding	the	batch-processing	options
You	have	access	to	a	wide	assortment	of	batch-processing	options	when	working	with	AWS.	In	fact,	so
many	options	are	available	that	covering	them	all	in	a	single	book	chapter	isn’t	possible.	This	book	is
written	with	the	developer	in	mind,	so	the	following	sections	address	batch-processing	options	that
involve	various	levels	of	complexity	and	flexibility.	For	example,	using	AWS	Batch	is	simple,	but	it
may	lack	some	of	the	flexibility	you	need	to	address	specific	needs.

DEFINING	THE	CLOUD	DIFFERENCE
Many	developers	are	used	to	working	with	clusters	or	other	localized	batch	methods.	The	cloud	provides	an	entirely	different
kind	of	environment,	and	you	need	a	completely	different	sort	of	batch-processing	approach	to	work	with	the	cloud.	For
starters,	clusters	tend	to	provide	specific	features	to	address	particular	workload	needs.	The	cloud	environment	is	far	more
generic.	A	cloud	solution	handles	multiple	workload	scenarios	with	equal	ease.

When	working	locally,	you	have	to	deal	with	hardware	that	has	specific	capacity	and	availability.	The	cloud	changes	all	that.
When	working	with	AWS,	you	can	add	as	much	capacity	as	you	need	and	the	added	hardware	is	instantly	available.	In
addition,	you	have	considerable	flexibility	in	configuring	that	hardware	in	specific	ways.	However,	when	working	in	the	cloud,
you	must	also	consider	price.	All	that	added	capacity,	flexibility,	and	availability	comes	at	a	cost.

A	cluster	environment	usually	relies	on	policies	and	priorities	to	allocate	resources.	The	cloud	environment	has	no	such
limitations.	In	addition,	when	working	in	the	cloud,	every	group	can	have	an	individualized	environment,	which	means	that	the
whole	idea	of	allocating	fixed	resources	according	to	a	policy	no	longer	works.	The	controlling	factor	becomes	one	of	benefit.
The	payback	for	a	particular	batch	process	must	exceed	the	cost	of	performing	the	batch	processing	using	whatever	means
the	group	in	question	requires.	The	policy	is	replaced	with	a	cost/benefit	analysis	to	determine	effectiveness	of	a	particular
strategy.

Using	AWS	Batch
AWS	Batch	(https://aws.amazon.com/batch/)	is	possibly	the	simplest	cloud-based	batch-
processing	solution	that	you’ll	find.	It’s	also	easy	to	set	up,	and	you	don’t	pay	for	anything	but	the
resources	that	the	service	uses.	As	with	most	AWS	services,	you	have	access	to	an	API	for	interacting
with	AWS	Batch	(http://docs.aws.amazon.com/batch/latest/APIReference/Welcome.html),
so	you	can	easily	add	batch	processing	directly	to	your	application.	According	to	the	article	at
https://venturebeat.com/2016/12/01/aws-launches-batch-processing-service-in-

preview/,	Amazon	introduced	AWS	Batch	in	response	to	similar	services	offered	by	other	cloud-
based	vendors.

AWS	Batch	may	sound	like	a	perfect	solution,	but	you	need	to	know	that	the	simplicity	and	ease	of
setup	come	at	the	cost	of	flexibility.	For	example,	if	you	need	to	integrate	local	data	or	work	with	other
cloud-based	solutions,	AWS	Batch	won’t	do	the	job	unless	you’re	willing	to	perform	a	lot	of	custom
development.	The	kludge	you	create	to	glue	things	together	will	be	fragile,	which	means	that	you	also
need	to	consider	the	reliability	of	the	result.	AWS	Batch	is	a	good	solution,	but	you	need	to	think	about
its	limitations	before	delving	into	it.

Extending	AWS	Batch	with	Docker	(https://www.docker.com/)	is	possible.	Of	course,	this	still
means	creating	a	custom	solution	of	sorts,	but	Docker	provides	great	support	for	creating	a	wealth	of
application	types.	According	to
http://docs.aws.amazon.com/batch/latest/userguide/Batch_GetStarted.html,	you	can

https://aws.amazon.com/batch/
http://docs.aws.amazon.com/batch/latest/APIReference/Welcome.html
https://venturebeat.com/2016/12/01/aws-launches-batch-processing-service-in-preview/
https://www.docker.com/
http://docs.aws.amazon.com/batch/latest/userguide/Batch_GetStarted.html

simply	submit	your	Docker	image	to	AWS	Batch	instead	of	creating	a	batch	job	as	normal.	The	article
at	https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-
job/	gives	you	the	information	needed	to	build	a	basic	fetch-and-run	job.	You	can	use	this	information
to	begin	creating	more	complicated	batch-job	scenarios.

Using	Amazon	EC2	Spot
Many	developers	will	find	that	using	a	simple	solution	such	as	AWS	Batch	won’t	work,	but	that
doesn’t	mean	you	can’t	rely	on	AWS	to	create	a	batch-processing	solution.	The	article	at
https://aws.amazon.com/blogs/compute/cost-effective-batch-processing-with-amazon-

ec2-spot/	describes	how	you	can	couple	various	AWS	services	together	to	create	a	batch-processing
solution	that’s	both	robust	and	flexible.	The	problem	is	that	now	you’re	looking	at	a	significant	amount
of	complexity	because	the	solution	in	question	relies	on	a	number	of	services:

EC2:	Provides	processing	power.
S3:	Individual	buckets	hold	incoming	and	outgoing	data.
Lambda:	Triggers	event	processing	when	new	data	arrives	in	the	incoming	bucket.
SQS:	Holds	the	job-processing	queue.
DynamoDB:	Contains	status	information	about	the	various	jobs	and	allows	for	job	updates.
EFS:	Provides	file	system-type	storage	for	EC2.

Depending	on	how	you	configure	the	setup,	the	number	of	services	can	increase.	Yes,	this	is	a
complete	solution	based	exclusively	on	AWS,	but	to	obtain	the	flexibility	and	scalability	that	most
businesses	need,	you	also	have	to	consider	the	complexity	and	the	potential	fragility	of	the	setup.

Creating	a	batch	process	using	CLI
One	of	the	ways	you	can	use	to	reduce	the	complexity	of	creating	a	purely	AWS	approach	to	batch
processing	is	to	rely	on	CLI	scripts.	The	article	and	resources	at
https://github.com/danilop/SampleBatchProcessing	provide	one	such	approach	to	the
problem.	As	with	most	flexible	solutions,	this	one	relies	on	a	number	of	AWS	services	to	get	the	job
done.	However,	by	scripting	the	setup,	you	make	creating	new	configurations	as	needed	easier.

Understanding	the	scripting	options
As	with	batch	processing,	too	many	script	solutions	exist	to	discuss	in	a	single	chapter.	In	fact,	if
anything,	you	have	more	scripting	choices	when	working	with	AWS	than	you	have	batch	solutions.	The
script	solutions	also	tend	to	vary	more	in	approach,	functionality,	and	flexibility.

Scripts	can	also	execute	automatically	based	on	events.	Chapter	10	discusses	one	such	option	using
Lambda.	The	following	sections	provide	an	overview	of	common	scripting	options	to	meet
generalized	scripting	scenarios.	You	need	to	do	your	homework	and	view	the	wide	variety	of	options
before	making	a	final	choice.	These	sections	help	make	you	aware	of	the	potential	solutions	so	that	you
can	wade	through	the	vast	number	of	options	with	greater	ease.

SCRIPTING	AND	THE	DEVELOPMENT	ENVIRONMENT
You	can	use	scripting	to	answer	more	than	just	application-development	needs.	A	script	need	not	end	up	as	an	end-user

https://aws.amazon.com/blogs/compute/creating-a-simple-fetch-and-run-aws-batch-job/
https://aws.amazon.com/blogs/compute/cost-effective-batch-processing-with-amazon-ec2-spot/
https://github.com/danilop/SampleBatchProcessing

application.	For	example,	to	save	money	during	development,	you	can	use	scripts	to	turn	AWS	instances	off	during	nonuse
times,	such	as	the	weekend	(assuming	that	you’re	not	one	of	those	developers	who	lives	in	the	office).	The	idea	is	to	have
AWS	services	that	are	used	solely	for	development	tasks	running	only	when	you’re	performing	development	work.	Turning
the	services	on	and	off	by	hand	would	be	time	consuming	and	error	prone,	so	scripting	provides	a	great	alternative.

You	can	also	use	scripts	to	control	the	development	environment.	Chapter	8	discusses	how	you	can	create	multiple	Elastic
Beanstalk	(EB)	environments	to	test	numerous	application	conditions	using	the	same	URL.	When	your	EB	setup	becomes
relatively	complex,	you	need	some	means	to	ensure	that	everything	gets	switched	around	so	that	your	end	user	sees	a	pure
environment.	Scripting	provides	a	great	answer:	Simply	execute	a	script	to	move	between	setups	as	needed.

Working	with	SDKs
Most	people	associate	scripting	with	simple	languages.	However,	today	developers	often	create
script-like	applications	using	languages	capable	of	complex	tasks	such	as	Java	and	Python.	With	this	in
mind,	the	first	place	a	developer	should	look	for	scripting	solutions	is	at	the	SDKs	that	Amazon
provides	at	https://aws.amazon.com/code.	The	page	includes	SDKs	for	many	major	languages,
and	you	use	the	SDKs	to	simplify	development	tasks	that	can	include	scripting	various	configuration
tasks.

	Note	that	this	same	page	includes	a	variety	of	example	applications	based	on	the	SDKs.	Many
of	these	examples	actually	show	how	to	implement	scripting	solutions.	For	example,	the	Simple
E-mail	Service	(SES)	scripts	found	at
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/Welcome.html	fall	into	the
scripting	category	because	they	really	aren’t	end-user	applications.	Another	such	example
appears	at	https://aws.amazon.com/code/4026240853893296.	This	example	shows	how	to
bootstrap	applications	using	AWS	CloudFormation.	The	point	is	that	you	can	use	your	favorite
language	to	create	needed	AWS	scripts.

Using	AWS	OpsWorks
AWS	OpsWorks	(https://aws.amazon.com/opsworks/)	is	a	Chef-based
(https://www.chef.io/solutions/infrastructure-automation/)	application	configuration
management	system	that	performs	essential	tasks	automatically.	The	interesting	thing	about	this	setup	is
that	if	you	know	how	to	write	Chef	scripts	(https://docs.chef.io/resource_script.html),	you
can	use	the	same	knowledge	to	automate	AWS	actions	(see	the	article	at
http://docs.aws.amazon.com/opsworks/latest/userguide/cookbooks-101-basics-

commands.html).

	One	of	the	benefits	of	relying	on	a	product	such	as	Chef	is	that	it	works	across	multiple
environments	(https://www.chef.io/solutions/cloud-management/).	This	means	that	you
can	use	Chef	scripts	to	integrate	multiple	cloud	solutions	and	help	them	work	together	to	achieve
specific	goals.	Chef	currently	works	with	these	cloud-based	environments:

Amazon	AWS
Google	Compute	Engine

https://aws.amazon.com/code
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/Welcome.html
https://aws.amazon.com/code/4026240853893296
https://aws.amazon.com/opsworks/
https://www.chef.io/solutions/infrastructure-automation/
https://docs.chef.io/resource_script.html
http://docs.aws.amazon.com/opsworks/latest/userguide/cookbooks-101-basics-commands.html
https://www.chef.io/solutions/cloud-management/

HP	Cloud
IBM	Smartcloud
Microsoft	Azure
OpenStack
Rackspace
VMWare

Relying	on	the	EC2	Run	Command
The	EC2	Run	command	(https://aws.amazon.com/ec2/run-command/)	gives	you	the	means	to	run
scripts	from	a	remote	location.	As	with	some	other	AWS	solutions,	this	one	is	free	except	for	the
resources	used	to	complete	any	requested	tasks.	This	is	an	AWS-only	solution,	which	means	that	you
can	run	commands	anywhere	across	AWS	(including	across	multiple	EC2	instances),	but	you	can’t	use
the	scripts	to	perform	tasks	on	other	cloud-based	environments	or	on	your	local	system.	As	a	result,	the
potential	for	integration	of	task	environments	is	limited.	The	article	at
https://www.infoq.com/news/2016/07/aws-multi-cloud-scripting	offers	some	additional
insights	about	this	solution.

Depending	on	third-party	solutions
Many	third-party	solutions	out	there	promise	to	make	scheduling	tasks	easier	and	provide	a	level	of
automation	similar	to	that	found	in	scripting.	For	example,	ParkMyCloud
(http://www.parkmycloud.com/)	makes	it	easy	to	schedule	a	wide	range	of	tasks	that	you	might
normally	script	using	custom	code.	The	blog	posts	at	http://www.parkmycloud.com/blog/
obviously	try	to	convince	you	that	you	can’t	live	without	this	solution,	but	they	also	offer	good	food	for
thought	even	if	you	choose	not	to	use	ParkMyCloud.

Using	a	third-party	solution	may	save	time	and	effort	scripting,	but	it	also	gives	you	ideas	for	creating
scripts	that	will	truly	make	you	productive.	The	point	is	that	you	need	to	choose	options	that	help	save
money	so	that	your	development	budget	isn’t	wasted	on	resources	you	don’t	actually	use.	Unlike	a
local	development	environment,	a	cloud	environment	offers	options	such	as	turning	off	running
instances.	By	optimizing	your	development	environment,	you	keep	costs	under	control	and	may	find
that	developing	in	the	cloud	is	actually	less	expensive	and	more	efficient	than	using	local	resources.

Performing	Batch	Processing	Locally
Localized	batch	processing	uses	the	built-in	capabilities	of	systems	owned	by	an	organization.	You	can
use	batch	processing	for	a	variety	of	tasks.	Larger	businesses	will	naturally	want	to	use	cloud-based
batch	processing	for	common	needs,	partly	because	their	IT	departments	are	large	and	complex.
However,	a	smaller	business	could	use	localized	batch	processing	for	all	needs	depending	on	what
those	needs	are.	Something	as	simple	as	Task	Scheduler
(https://msdn.microsoft.com/library/windows/desktop/aa383614.aspx)	on	Windows	can
enable	you	to	perform	tasks	and	a	schedule	on	AWS.	Interestingly	enough,	many	localized	task-
scheduling	applications	include	programmable	access	through	APIs,	so	you	can	turn	even	a
rudimentary	capability	into	something	better	suited	to	meet	needs	in	the	cloud.	Here	are	some	issues	to
consider	for	localized	batch	processing:

https://aws.amazon.com/ec2/run-command/
https://www.infoq.com/news/2016/07/aws-multi-cloud-scripting
http://www.parkmycloud.com/
http://www.parkmycloud.com/blog/
https://msdn.microsoft.com/library/windows/desktop/aa383614.aspx

Management:	Many	organizations	want	to	reduce	software	management	requirements	and
localized	batch	processing	does	need	local	talent	to	maintain.	However,	offsetting	the	need	for
additional	human	resources	is	the	capability	to	maintain	firm	control	over	the	batch	process.
Integration:	Cloud-based	batch	processing	may	not	work	well	with	local	batch-processing	needs.
Where	you	need	to	integrate	local	and	cloud	resources,	using	a	localized	batch-processing	strategy
may	work	better.
Reliability:	There	is	a	misperception	that	cloud-based	means	extreme	reliability.	However,	AWS
can	and	does	go	offline.	The	stories	at	https://www.geekwire.com/2017/amazon-explains-
massive-aws-outage-says-employee-error-took-servers-offline-promises-changes/

and	https://www.theregister.co.uk/2017/03/01/aws_s3_outage/	tell	you	how	bad	things
can	get.	In	this	case,	AWS	didn’t	even	tell	anyone	it	was	down,	so	no	one	could	know	there	was
even	a	need	to	recover.	A	localized	batch-processing	solution	can	prove	to	be	every	bit	as	reliable
as	a	cloud-based	solution.	The	difference	is	the	kinds	of	issues	that	will	affect	the	two	solution
types.	A	localized	solution	is	more	susceptible	to	local	events,	such	as	outages	due	to	weather.
Cloud-based	solutions	are	more	susceptible	to	global	events	or	to	human	error	(because	far	more
humans	are	involved,	more	potential	failure	points	exist).
Security:	Using	local	batch	processing	is	generally	more	secure	than	using	cloud-based	batch
processing	because	you	can	exercise	tighter	control	over	when	and	how	the	batches	execute.	The
more	sensitive	the	data	you	manage	using	batch	processes,	the	more	careful	you	need	to	be	with
regard	to	security.
Speed:	No	matter	how	you	look	at	it,	unless	your	data	resides	with	just	a	single	cloud	provider	in
just	one	location	and	you	have	no	need	to	integrate	local	data,	local	batch	processing	is	going	to	be
faster	than	a	cloud-based	solution.	Given	that	developers	are	constantly	fighting	time	(in	that	users
want	everything	fast,	and	then	faster	still),	speed	is	a	major	concern	when	considering	the	use	of
localized	batch-processing	techniques.

Developing	Scripts
Creating	scripts	often	means	working	with	the	CLI	to	determine	how	to	create	the	required	commands.
This	development	process	involves	playing	with	AWS	to	ensure	you	understand	what	is	going	on	at	a
low	level.	Fortunately,	the	CLI	does	provide	some	functionality	to	make	it	easier	to	perform	tasks	and
develop	scripts	resulting	from	your	efforts	faster.

Client-side	filtering:	Trying	to	process	every	result,	even	if	you	may	eventually	need	them,
consumes	a	lot	of	local	resources.	You	can	fine-tune	the	results	you	actually	use	on	the	client	side
by	adding	the	--query	command	line	switch.	To	use	this	switch,	you	must	make	your	request	using
the	JSON	Matching	Expression	Path	(JMESPath,	which	is	pronounced	James	Path)	language
described	at	http://jmespath.org/.	The	article	at
http://opensourceconnections.com/blog/2015/07/27/advanced-aws-cli-jmespath-

query/	provides	some	interesting	examples	of	how	to	use	JMESPath	with	AWS.

Command	completion:	When	working	with	Linux	systems,	you	can	enable	command	completion.
This	feature	enables	you	to	press	Tab	to	complete	a	command	rather	than	type	the	entire	command
from	scratch.	You	can	discover	more	about	command	completion	at

https://www.geekwire.com/2017/amazon-explains-massive-aws-outage-says-employee-error-took-servers-offline-promises-changes/
https://www.theregister.co.uk/2017/03/01/aws_s3_outage/
http://jmespath.org/
http://opensourceconnections.com/blog/2015/07/27/advanced-aws-cli-jmespath-query/

http://docs.aws.amazon.com/cli/latest/userguide/cli-command-completion.html.

Multiple	profiles:	The	aws	utility	config	file	(found	in	the	user’s	.aws	folder)	can	contain
multiple	profiles,	each	of	which	can	contain	different	IAM	user	role	settings.	These	profiles
appear	in	a	[profile	name]	block	where	you	replace	name	with	the	name	of	the	profile.	Using
multiple	profiles	also	lets	you	perform	tasks	using	the	appropriate	credentials.	Modify	the	aws
utility	credentials	file	to	add	other	credentials	to	the	list.	Each	credential	pair	(private	and
public	key)	appears	in	a	separate	[name]	block.	To	switch	between	roles,	you	add	the	--profile
name	command-line	switch	to	your	command.

Server-side	filtering:	By	default,	AWS	serves	up	a	list	of	1,000	for	various	requests.	Moving	that
data	across	the	network	slows	your	script	to	a	crawl.	The	--filter	command-line	switch
supplied	with	many	commands	enables	you	to	reduce	the	number	of	results	coming	from	the	server
to	the	client,	thereby	improving	overall	scripting	speed.
Service	configuration	defaults:	The	aws	utility	config	file	can	contain	default	settings	for	the
various	services.	The	use	of	default	settings	makes	it	possible	to	type	shorter	commands	and
ensures	that	you	execute	the	commands	consistently.	Each	default	setup	appears	with	the	service
name,	an	equals	sign,	and	the	settings.	For	example,	here	is	a	default	S3	setup:

s3	=

		max_concurrent_requests	=	100

		max_queue_size	=	10000

Text	output:	Often	you	need	to	have	text-only	output	to	pass	to	another	command	in	a	pipe.	In	this
case,	you	use	the	--output	text	command-line	switch	to	remove	the	extra	characters	that	often
cause	problems	with	textual	output.
Waiting:	Some	script	commands	require	quite	a	bit	of	time	to	execute,	and	you	can’t	proceed	to	the
next	step	until	they	complete.	In	this	case,	you	can	add	the	wait	argument	to	the	command	to	tell	the
CLI	that	you	want	to	wait	for	the	command	to	complete	before	proceeding.	The	wait	argument
always	appears	after	the	service	name,	such	as	aws	ec2	wait.

Using	Scripts	Locally
Some	developers	get	caught	up	with	all	kinds	of	fancy	scripting	schemes	when	a	simple	solution	will
do	just	fine.	In	many	cases,	all	you	really	need	is	the	scripting	capabilities	provided	by	your	local
platform.	The	main	reasons	to	use	this	approach	are	simplicity	and	speed.

The	command	processor	for	platforms	such	as	Windows	will	repeat	any	series	of	aws	utility
commands	as	a	script.	All	you	really	need	to	do	is	record	the	commands	you	commonly	use	in	a	text
file	with	an	appropriate	extension,	such	as	.bat.	Depending	on	the	platform	capabilities,	you	may
have	access	to	complex	flow	control	functionality	as	well,	but	even	the	most	basic	command	processor
supports	limited	flow	control.

Using	an	ad	hoc	scripting	approach	like	this	is	also	fast	because	you	can	put	the	script	together	in
minutes.	You	won’t	want	to	create	a	complex	script	this	way,	but	a	simple	series	of	steps	will	work
fine.	The	idea	is	to	keep	the	task	small	and	approachable.

After	you	get	past	basic	needs,	however,	a	command-processor	approach	won’t	work.	You	still	have
access	to	options	such	as	Anaconda.	The	notebooks	you	can	create	by	using	Python	code	in	Anaconda

http://docs.aws.amazon.com/cli/latest/userguide/cli-command-completion.html

can	become	extremely	complicated.	Performing	any	task	from	your	system	that	you	could	perform	from
a	cloud-based	solution	is	possible;	however,	you	must	consider	the	following	issues	when	using	this
approach:

Availability:	The	script	you	create	is	available	only	on	your	system	(or	network).	Consequently,	if
someone	else	needs	the	script,	you	must	send	it	separately	because	you	lack	a	centralized
repository	of	scripts	that	anyone	in	your	organization	can	use.
Security:	Keeping	scripts	local	does	tend	to	ensure	that	only	people	who	have	a	need	to	access	the
script	can	actually	access	it.	In	addition,	you	can	more	easily	control	when	and	how	someone	uses
the	script.
Speed:	Because	localized	scripts	drag	every	piece	of	data	across	the	network,	you	incur	a	speed
penalty	using	them.	However,	using	techniques	such	as	filtering	can	mitigate	this	issue,	and	you
might	actually	find	that	your	scripts	execute	faster	when	you	must	couple	the	AWS	output	with
information	from	local	sources.

Interacting	with	aws-shell
Trying	to	remember	every	aws	utility	command,	even	with	the	availability	of	help,	is	tough.	In	fact,	it’s
downright	impossible.	So	you	can	spend	hours	with	the	online	documentation	and	type	endless
experimental	commands,	or	you	can	get	some	type	of	help.	The	aws-shell	utility	works	with	the	aws
utility	to	provide	an	interactive	CLI	experience.	You	use	it	to	make	working	with	aws	easier.	The
following	sections	discuss	how	you	can	use	aws-shell	to	make	your	script	and	batch-process
experience	better.

Considering	aws-shell	features
The	aws-shell	utility	(https://aws.amazon.com/about-aws/whats-new/2015/12/aws-shell-
accelerates-productivity-for-aws-cli-users/)	comes	with	a	host	of	interesting	features.	The
interactivity	alone	makes	it	worth	using,	but	you	also	get	these	additions	as	part	of	the	package	(make
sure	to	also	check	out	the	blog	that	is	available	from	within	the	preceding	article	link):

Auto-completion:	As	you	type	commands,	you	see	a	list	of	available	options	to	complete	the	next
step.	For	example,	after	you	type	aws,	you	see	a	list	of	services	that	you	can	add	as	the	next	step	in
the	command	process.
Auto-suggestion:	If	the	shell	recognizes	a	pattern	to	the	values	you	type,	it	gives	you	a	completed
command.	Pressing	Tab	automatically	enters	the	remaining	text.
Command	history:	Even	though	most	command-prompt	and	terminal-window	implementations
retain	a	command	history,	the	information	is	available	for	only	the	current	session.	The	aws-shell
utility	stores	this	information	in	a	file	for	later	use.
Dot	(.)	commands:	The	aws-shell	gives	you	access	to	additional	aws-shell–specific	commands
through	the	dot	(.)	prompt.	Here	are	a	few	examples:

.edit:	Provides	the	means	for	saving	the	commands	you	type	as	part	of	a	shell	script.

.profile:	Modifies	the	profile	used	to	execute	commands	so	that	you	don’t	have	to	include

https://aws.amazon.com/about-aws/whats-new/2015/12/aws-shell-accelerates-productivity-for-aws-cli-users/

the	--profile	argument	every	time	you	type	a	command.

.cd:	Changes	the	directory	to	the	specified	location	on	disk.
Fuzzy	searches:	You	may	not	remember	an	argument	or	other	command	component	precisely.
Typing	a	value	that	appears	as	part	of	the	actual	argument	displays	a	list	of	suggestions	that	you	can
use	in	place	of	that	part	you	remember.
Inline	documentation:	Help	is	always	available	as	part	of	the	shell.	As	you	type	values,	the	shell
automatically	displays	help	for	that	value	so	that	you	can	be	sure	you’re	typing	the	right
information.
Server-side	auto-complete:	Typing	a	command	component	that	requires	a	server-side	value,	such
as	an	ARN,	usually	requires	a	lookup	on	your	part.	When	using	aws-shell,	the	shell	performs	the
lookup	for	you	and	displays	a	list	of	acceptable	values.
Shell	command	access:	If	you	need	to	access	the	underlying	operating	system	commands,	type	an
exclamation	mark	(!)	before	the	command.	For	example,	type	!	dir	and	press	Enter	to	obtain	a
directory	listing	on	a	Windows	system.
Shorthand	auto-complete:	You	can	use	shorthand	notation	to	define	a	specific	longer	sequence	of
commonly	used	commands.	Typing	the	shorthand	form	is	the	same	as	typing	the	full	sequence.
Toolbar	options:	The	status	bar	shows	a	list	of	function	keys	that	you	can	press	to	obtain	specific
functionality	from	aws-shell.	For	example,	you	can	turn	fuzzy	searches	on	or	off	as	needed.

Getting	aws-shell
Because	you	have	Anaconda	installed	on	your	system,	you	also	have	an	appropriate	version	of	Python
installed,	and	you	can	use	the	pip	utility	to	perform	the	task.	To	install	aws-shell,	open	a	command
prompt	or	terminal	window,	type	pip	install	--upgrade	aws-shell,	and	press	Enter.	You	see	a	series	of
installation	messages	as	pip	performs	the	installation	process,	as	shown	in	Figure	9-1.

FIGURE	9-1:	Perform	the	installation	of	the	aws-shell	using	pip.

To	test	your	installation,	type	aws-shell	and	press	Enter.	You	see	the	initial	display,	shown	in	Figure	9-
2.	Note	that	the	status	bar	shows	the	function	keys	you	can	press	to	enable	or	disable	specific	aws-
shell	features.	At	this	point,	you	might	want	to	get	a	cup	of	coffee	because	the	documentation	must

download;	waiting	for	a	few	minutes	for	this	process	to	complete	makes	using	aws-shell	easier.

FIGURE	9-2:	Start	aws-shell	for	an	initial	test.

Performing	simple	tasks
Most	previous	commands	found	in	this	book	begin	with	aws	or	some	other	CLI	command.	Note	the
prompt	in	Figure	9-2.	Every	command	you	type	assumes	that	you	have	preceded	it	with	aws.
Consequently,	if	you	want	to	perform	a	task	using	Elastic	Beanstalk,	you	type	elas	to	display	a	list	of
commands.	It’s	then	possible	to	press	the	down-arrow	key	to	select	one	of	these	commands	as	shown
in	Figure	9-3.

FIGURE	9-3:	Use	the	down-arrow	key	to	select	a	command.

Press	the	spacebar	to	continue	the	command.	You	now	see	a	list	of	commands	that	you	can	type,	along
with	help	information,	as	shown	in	Figure	9-4.	Note	that	the	help	information	is	actually	getting	in	the
way	in	this	case.	You	can	turn	it	off	by	pressing	F5.	(Unfortunately,	pressing	F5	right	at	this	moment
will	cause	the	command	to	terminate,	but	you	can	start	it	again	without	a	problem.)

FIGURE	9-4:	The	aws-shell	utility	provides	you	with	all	the	information	needed	to	create	useful	commands	quickly.

The	service	name	appears	in	red	letters.	Type	des	after	the	space.	You	see	a	listing	of	possible
commands,	as	shown	in	Figure	9-5.	As	before,	you	press	the	down-arrow	key	to	select	a	particular
command.	For	this	example,	select	describe-environments.	When	you	select	a	particular	command,
the	text	turns	turquoise.

FIGURE	9-5:	Choose	a	command	to	execute.

The	default	setup	for	aws	for	this	book	is	to	output	information	in	tabular	form.	Type	--	to	display	a	list
of	options	for	this	command,	as	shown	in	Figure	9-6.	Use	the	down-arrow	key	to	select	--output.	Note
that	the	options	appear	in	dark	green.	The	help	screen	also	tells	you	what	to	type	next.	In	this	case,	you
type	a	string	that	contains	the	format	you	want	to	use	for	the	output.

FIGURE	9-6:	Select	options	to	modify	command	execution.

Press	the	spacebar	to	select	the	command.	This	time,	you	don’t	see	any	help	information;	you	must
know	that	text	is	one	of	the	options.	Type	text	and	press	Enter.	You	see	the	command	output,	as	shown
in	Figure	9-7.

FIGURE	9-7:	After	the	command	executes,	you	see	the	output	just	as	you	would	when	using	aws.

Of	course,	you	can	just	as	easily	see	the	output	in	JSON	format.	Press	the	up-arrow	key	and	you	see	the
command	repeated.	Press	Backspace	to	remove	text	and	type	json.	Press	Enter.	Figure	9-8	shows	the
new	output.	This	technique	relies	on	using	the	command	history.	Interestingly	enough,	even	after	you
stop	and	restart	aws-shell,	you	have	access	to	this	command	simply	by	using	the	command	history.

FIGURE	9-8:	Using	the	history	feature	makes	modifying	commands	easy.

The	display	has	gotten	messy	at	this	point.	You	can	clean	it	up	on	most	platforms	using	the	clear	screen
(cls)	command.	Of	course,	this	means	accessing	the	underlying	command	processor.	Type	!cls	and
press	Enter.	If	your	system	supports	the	cls	command,	you	see	the	screen	cleared.

Obtaining	help
One	of	the	commands	that	you	don’t	see	listed	when	you	work	with	aws-shell	is	help.	The	command
is	still	there,	but	you	have	to	remember	that	it	is	available.	For	example,	to	see	the	help	associated
with	the	ec2	service,	type	ec2	help	and	press	Enter.	You	see	output	similar	to	that	shown	in	Figure	9-9.
The	aws-shell	utility	automatically	uses	any	paging	utility	available	on	your	platform	to	display	one
page	of	help	information	at	a	time.

FIGURE	9-9:	The	aws-shell	utility	provides	full	access	to	aws	help.

Editing	your	commands
One	of	the	handiest	features	of	aws-shell	is	the	capability	to	save	your	commands	in	permanent	form.
After	you	experiment	for	a	while	and	know	you	have	the	right	set	of	commands	in	place,	it’s	time	to
create	a	script	or	batch	file.	To	perform	this	task,	type	.edit	and	press	Enter.	What	you	see	is	the	text
file	editor	for	your	particular	platform	with	the	history	of	the	commands	you	have	typed,	as	shown	in
Figure	9-10.

FIGURE	9-10:	Commands	you	type	appear	in	the	text	file	that	you	save	as	a	script.

Note	that	the	file	lacks	the	!cls	command	that	you	type	in	the	“Performing	simple	tasks”	section,
earlier	in	this	chapter.	The	only	commands	you	see	are	those	that	you	actually	type	for	aws.	You	can
edit	this	file	and	then	save	it	as	needed.	For	example,	when	working	with	Windows,	you	can	save	the
file	with	a	.bat	file	extension	and	repeat	the	commands	as	a	script.

	Of	course,	if	you	want	to	use	aws-shell	as	a	means	for	creating	scripts,	you	really	do	need	to
clear	the	history	before	each	session.	No	command	exists	for	performing	this	task	now.
Consequently,	you	must	delete	the	history	file	found	in	the	\.aws\shell	folder	of	your	system.
This	folder	also	contains	an	awsshellrc	file	that	you	can	use	to	change	the	default	settings	for
your	aws-shell	setup.

Chapter	10
Responding	to	Events	with	Lambda

IN	THIS	CHAPTER
	Defining	the	Lambda	feature	set
	Working	with	Lambda	at	the	console
	Building	a	basic	Lambda	application
	Adding	Simple	Queue	Services	(SQS)	support

Amazon	designed	AWS	Lambda	to	let	you	build	and	run	applications	in	the	cloud.	The	applications
you	create	depend	on	Node.js	(https://nodejs.org/),	a	JavaScript	environment	that	you	used	in
Chapter	5	to	interact	with	S3.	You	can	create	AWS	scripts	with	Node.js	on	your	local	system	and	then
upload	them	to	Lambda	to	execute	within	the	cloud	environment.	You	typically	use	Lambda	to	perform
tasks	in	these	situations:

As	a	response	to	an	event	triggered	by	a	service	or	application
As	part	of	a	direct	call	from	a	mobile	application	or	web	page

	Lambda	doesn’t	cost	you	anything.	However,	Amazon	does	charge	you	for	each	request	that
your	code	makes,	the	time	that	your	code	runs,	and	any	nonfree	services	that	your	code	depends
on	to	perform	useful	work.	In	some	cases,	you	may	find	that	a	given	service	doesn’t	actually	cost
anything.	For	example,	you	could	use	S3	with	Lambda	at	the	free-tier	level	to	perform
experimentation	and	pay	only	for	the	code	requests	and	running	time.	The	examples	in	this	chapter
don’t	require	that	you	actually	run	any	code	—	you	simply	set	up	the	application	to	run	should	you
desire	to	do	so,	but	the	setup	itself	doesn’t	incur	any	cost.

The	first	several	sections	of	the	chapter	focus	on	discovering	and	configuring	Lambda,	and	creating	a
simple	application	for	it.	However,	the	real	power	of	Lambda	comes	from	pairing	it	with	a	number	of
services.	For	example,	you	discover	in	Chapter	9	that	Lambda	is	part	of	a	strategy	for	performing
batch	processing	on	AWS.	The	last	section	of	this	chapter	looks	at	using	Lambda	with	SQS	to	perform
multiservice	tasks.

Considering	the	Lambda	Features
Before	you	can	actually	work	with	Lambda,	you	need	to	know	more	about	it.	Saying	that	Lambda	is	a
code-execution	environment	is	a	bit	simplistic;	Lambda	provides	more	functionality	because	it	helps
you	do	things	like	respond	to	events.	However,	starting	with	the	concept	of	a	serverless	code-
execution	environment,	one	that	you	don’t	have	to	manage,	is	a	good	beginning.	The	following	sections

https://nodejs.org/

fill	in	the	details	of	the	Lambda	feature	set.	Even	though	this	information	appears	as	an	overview,	you
really	need	to	know	it	when	working	through	the	examples	that	follow	in	this	chapter.

Working	with	a	server
Most	applications	today	rely	on	a	specific	server	environment.	In	a	production	scenario,	an
administrator	creates	a	server	environment,	either	physical	or	virtual,	configures	it,	and	then	provides
any	required	resources	a	developer	may	need.	The	developer	then	places	an	application	created	and
tested	on	a	test	server	of	precisely	the	same	characteristics	on	the	server.	After	some	testing,	the
administrator	comes	back	and	performs	additional	configuration,	such	as	setting	up	accounts	for	users.
Other	people	may	get	involved	as	well.	For	example,	a	DBA	may	set	up	a	database	environment	for
the	application,	and	a	web	designer	may	create	a	mobile	interface	for	it.	The	point	is	that	a	lot	of
people	get	involved	in	the	process	of	getting	this	application	ready	for	use,	and	they	remain	involved
as	the	application	evolves.	The	time	and	money	spent	to	maintain	the	application	is	relatively	large.
However,	the	application	environment	you	create	provides	a	number	of	important	features	that	you
must	consider	before	moving	to	a	serverless	environment:

The	server	is	completely	under	the	organization’s	control,	so	the	organization	chooses	every
feature	about	the	server.
The	application	environment	tends	to	run	faster	than	even	the	best	cloud	server	can	provide	(much
less	a	serverless	environment,	in	which	you	have	no	control	over	the	server	configuration).
Any	data	managed	by	the	application	remains	with	the	organization,	so	the	organization	can	reduce
the	potential	for	data	breaches	and	can	better	adhere	to	any	legal	requirements	for	the	data.
Adding	more	features	to	the	server	tends	to	cost	less	after	the	organization	pays	for	the	initial
outlay.
A	third	party	can’t	limit	the	organization’s	choice	of	support	and	other	software	to	use	with	the
application,	nor	can	it	suddenly	choose	to	stop	supporting	certain	software	functionality	(thereby
forcing	an	unexpected	application	upgrade).
Security	tends	to	be	less	of	a	concern	when	using	a	localized	server	as	long	as	the	organization
adheres	to	best	practices.

Working	in	a	serverless	environment
Using	a	localized	server	does	have	some	significant	benefits,	but	building,	developing,	and
maintaining	servers	is	incredibly	expensive	because	of	the	staffing	requirements	and	the	need	to	buy
licenses	for	the	various	pieces	of	software.	(You	can	mitigate	software	costs	by	using	lower-cost	open
source	products,	but	the	open	source	products	may	not	do	everything	you	need	or	may	provide	the
same	services	in	a	less	efficient	environment.)	However,	organizations	have	more	than	just	cost
concerns	to	consider	when	it	comes	to	servers.	Users	want	applications	that	are	flexible	and	work
anywhere	today.	With	this	in	mind,	here	are	some	reasons	that	you	may	want	to	consider	a	serverless
environment	for	your	application:

Environment	duplication:	For	a	developer,	the	capability	to	precisely	duplicate	the	production
environment	as	a	test	environment	is	essential.	Otherwise,	usage,	performance,	and	even	some
coding	issues	will	remain	unresolved	until	the	application	actually	goes	into	production.	Using	a

serverless	environment	enables	you	to	create	as	many	copies	of	the	production	environment	as
needed	because	all	you	consider	is	environment	settings	—	not	hardware,	software,	or	anything
else	for	that	matter.
Improved	development	team	efficiency:	Reducing	the	number	of	people	involved	in	a	process
generally	increases	efficiency	because	you	have	fewer	lines	of	communication	and	fewer	human
failure	points	as	well.	In	addition,	the	developer	needs	to	worry	only	about	writing	great	code	—
not	whether	the	server	will	function	as	expected.
Low	learning	curve:	Working	with	Lambda	doesn’t	require	that	you	learn	any	new	programming
languages.	In	fact,	you	can	continue	to	use	the	third-party	libraries	that	you	like,	even	if	those
libraries	rely	on	native	code.	Lambda	provides	an	execution	environment,	not	an	actual	coding
environment.	You	use	a	Lambda	function	(explained	in	the	“Creating	a	Basic	Lambda	Application”
section,	later	in	this	chapter)	to	define	the	specifics	of	how	your	application	runs.

	Lambda	does	provide	a	number	of	prebuilt	function	templates	for	common	tasks,	and	you
may	find	that	you	can	use	one	of	these	templates	instead	of	building	your	own.	It	pays	to	become
familiar	with	the	prebuilt	templates	because	using	them	can	save	you	considerable	time	and	effort.
You	just	need	to	tell	Lambda	to	use	a	particular	template	with	your	service	resources.
Lower	hardware	and	administration	cost:	You	don’t	have	hardware	costs	because	Amazon
provides	the	hardware,	and	the	administration	costs	are	theoretically	zero	as	well.	However,	you
do	pay	for	the	service	and	need	to	consider	the	trade-off	between	the	cost	of	the	hardware,
administration,	and	services.
Automatic	scaling:	You	can	bring	on	additional	hardware	immediately	without	any	startup	time	or
costs.	However,	automatic	scaling	can	be	a	two-edged	sword	for	the	developer	because	it	can
serve	to	hide	both	speed	and	resource-usage	issues.	In	general,	you	want	to	configure	your	setup
for	the	expected	usage	level	and	then	test	using	automatic	scaling	later.
Increased	reliability:	Because	Amazon	can	provide	additional	systems	immediately,	a	failure	at
Amazon	usually	doesn’t	spell	a	failure	for	your	application.	What	you	get	is	akin	to	having	multiple
sets	of	redundant	failover	systems.

	Many	of	Amazon’s	services	come	with	hidden	assumptions	that	can	cause	problems.	For
example,	with	Lambda,	Amazon	fully	expects	that	you	use	other	Amazon	services	as	well.	A
Lambda	app	can	react	to	an	event	such	as	a	file	being	dropped	into	an	S3	bucket	by	a	user,	but	it
can’t	react	to	an	event	on	your	own	system.	The	user	may	drop	a	file	onto	a	folder	on	your	server,
but	that	event	doesn’t	create	an	event	that	Lambda	can	see.	What	you	really	get	with	Lambda	is	an
incredible	level	of	flexibility	with	significantly	reduced	costs	as	long	as	you	want	to	use	the
services	that	Amazon	provides	with	it.	In	the	long	run,	you	may	actually	find	that	Lambda	locks
you	into	using	Amazon	services	that	don’t	really	meet	your	needs,	so	be	sure	to	think	about	the
ramifications	of	the	choices	you	make	during	the	experimentation	stage.

Starting	the	Lambda	Console
The	Lambda	Console	provides	you	with	one	way	in	which	to	interact	with	Lambda	(you	can	also	use
CLI	and	programmatic	methods).	It	gives	you	a	method	for	telling	Lambda	what	to	do	with	the	code
you	upload.	Using	the	Lambda	Console	takes	what	could	be	a	complex	task	and	makes	it	considerably
easier	so	that	you	can	focus	on	what	you	need	to	do,	rather	than	on	the	code-execution	details.	Lambda
automatically	addresses	many	of	the	mundane	server	setup	and	configuration	tasks	for	you.	With	this
time	savings	in	mind,	use	these	steps	to	open	a	copy	of	the	Lambda	Console:

1.	 Sign	into	AWS	using	your	user	account.
2.	 Navigate	to	the	Lambda	Console	at	https://console.aws.amazon.com/lambda.

You	see	a	Welcome	page	that	contains	interesting	information	about	Lambda	and	what	it	can	do	for
you.	However,	you	don’t	see	the	actual	console	at	this	point.

3.	 Click	Get	Started	Now.
You	see	the	Select	Blueprint	page,	shown	in	Figure	10-1.	The	initial	examples	in	this	chapter	rely
on	the	blueprints	so	that	you	can	see	how	you	can	quickly	prototype	a	potential	solution.
Prototyping	lets	you	create	ad	hoc	solutions	quickly.	As	your	need	for	flexibility	and	functionality
increases,	you	can	move	to	the	API.	Developers	use	both	the	blueprints	and	the	API	as	needed.

FIGURE	10-1:	Access	the	Lambda	functionality	through	blueprints	to	make	tasks	easy.

API	QUICK	START
Even	though	prototyping	is	the	best	way	to	get	started,	you	might	want	a	look	at	the	API	as	well.	If	you’d	like	to	use	the	API
immediately,	you	want	to	start	by	reviewing	the	developer-oriented	documentation	at

https://console.aws.amazon.com/lambda

https://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html	and	then	proceed	to	the	API	documentation	at
https://docs.aws.amazon.com/lambda/latest/dg/API_Reference.html.	However,	using	the	approach	in	this	chapter	works	as	a
good	starting	point	for	developers.	You	can	access	the	AWS	documentation	pages	at
https://aws.amazon.com/documentation/	at	any	time	to	review	this	material,	even	if	you	aren’t	logged	into	an	account.

Creating	a	Basic	Lambda	Application
The	previous	section	discusses	the	Lambda	Console	and	shows	how	to	start	it.	Of	course,	just	starting
the	console	doesn’t	accomplish	much.	To	make	Lambda	useful,	you	need	to	upload	code	and	then	tell
Lambda	how	to	interact	with	it.	To	make	things	easier,	one	Lambda	programming	technique	relies	on
the	concept	of	a	blueprint,	which	works	much	as	the	name	implies.	It	provides	a	basic	structure	for
creating	the	function	that	houses	the	code	you	want	to	execute.	The	following	sections	describe	how	to
create	a	Lambda	application	using	a	blueprint	and	interact	with	the	application	in	various	ways
(including	deleting	the	function	when	you	finish	with	it).

	Creating,	configuring,	and	deleting	a	function	won’t	cost	you	anything.	However,	if	you
actually	test	your	function	and	view	metrics	that	it	produces,	you	may	end	up	with	a	charge	on
your	credit	card.	Be	sure	to	keep	the	requirement	to	pay	for	code-execution	resources	in	mind
when	going	through	the	following	sections.	If	you	configured	your	AWS	account	as	described	in
the	“Considering	the	eventual	need	for	paid	services”	section	of	Chapter	3,	you	should	receive	an
email	telling	you	about	any	charges	accrued	as	the	result	of	performing	the	procedures	in	the
following	section.

Selecting	a	Lambda	blueprint
Lambda	supports	events	from	a	number	of	Amazon-specific	sources	such	as	S3,	DynamoDB,	Kinesis,
SNS,	and	CloudWatch.	This	chapter	relies	on	S3	as	an	event	source,	but	the	techniques	it	demonstrates
work	with	any	Amazon	service	that	produces	events	that	Lambda	can	monitor.

When	working	with	blueprints,	you	need	to	know	in	advance	the	requirements	for	using	that	blueprint.
For	example,	Figure	10-2	shows	the	blueprint	used	in	this	chapter,	s3-get-object-python.	The	blueprint
name	tells	you	a	little	about	the	blueprint,	but	the	description	adds	to	it.	However,	the	important
information	appears	at	the	bottom	of	the	box.	In	this	case,	you	see	that	the	blueprint	uses	Python	2.7	and
S3.	Every	blueprint	includes	these	features,	so	you	know	what	resources	the	blueprint	requires	before
you	use	it.

FIGURE	10-2:	Determine	the	requirements	for	using	a	blueprint	at	the	outset.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-introduction.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Reference.html
https://aws.amazon.com/documentation/

	Amazon	provides	a	number	of	blueprints,	and	finding	the	one	you	need	can	be	time	consuming.
Adding	a	condition	to	the	Filter	field	or	choosing	a	programming	language	from	the	Language
field	reduces	the	search	time.	For	example,	to	locate	all	the	S3-specific	blueprints,	type	S3	in	the
Filter	field.	Likewise,	to	locate	all	the	Python	2.7	blueprints,	choose	Python	2.7	in	the	Languages
field.

A	WORD	ABOUT	PRODUCT	VERSIONS
An	interesting	detail	about	the	use	of	Python	2.7.x	is	that	it	isn’t	the	most	current	version	of	Python	available.	Many	people
have	moved	to	Python	3.4.x	(see	the	downloads	page	at	https://www.python.org/downloads/	for	details).	In	fact,	you	can	find
versions	as	high	as	3.6.1	used	for	applications	now,	so	you	may	question	the	wisdom	of	using	an	older	version	of	Python	for
your	Lambda	code.

Given	that	the	copy	of	Anaconda	used	for	this	book	relies	on	Python	3.6.1,	you	may	need	to	perform	a	separate	Python	2.7.x
version	download	to	work	with	Lambda	when	you	choose	to	use	the	default	Python	2.7.x	settings.	There	is	also	an	option	to
use	Python	3.6.1,	but	you	must	select	it	separately;	see	the	“Configuring	a	function”	section	for	details.	This	downloaded
version	will	reside	in	its	own	folder,	and	you	can	access	it	as	a	separate	development	environment.

Python	is	unique	in	that	some	groups	use	the	2.7.x	version	and	other	groups	use	the	3.4.x	and	higher	version.	Developers,
data	scientists,	and	others	who	perform	data-analysis	tasks	mainly	use	the	2.7.x	version	of	Python	because	of	its	stronger
library	support	(although	this	support	need	is	changing),	so	Amazon	has	wisely	chosen	to	concentrate	on	that	version.
(Eventually,	all	development	tasks	will	move	to	the	3.x	version	of	the	product.)	Using	the	2.7.x	version	means	that	you’re
better	able	to	work	with	other	people	who	perform	data-analysis	tasks.	In	addition,	if	Amazon	used	the	3.x	version	instead,
you	might	find	locating	real-world	application	examples	difficult.	The	Python	2.7.x	code	does	have	compatibility	issues	with
Python	3.x,	so	if	you	choose	to	use	Python	3.x	anyway,	you	also	need	to	update	the	Amazon	code.

You	may	find	that	Amazon	uses	odd	versions	of	other	languages	and	products	as	well.	In	some	cases,	the	choice	of
language	or	product	version	has	to	do	with	updating	the	Amazon	code,	but	in	other	cases,	you	may	find	that	the	older	version
has	advantages,	such	as	library	support	(as	is	the	case	with	Python).	Be	sure	to	look	at	the	versions	of	products	when
supplied	because	you	need	to	use	the	right	version	to	get	good	results	when	working	with	Lambda.

	Amazon	licenses	most	of	the	blueprints	under	the	Creative	Commons	Zero	(CC0)	rules	(see
https://creativecommons.org/publicdomain/zero/1.0/	for	details).	This	means	that
Amazon	has	given	up	all	copyright	to	the	work,	and	you	don’t	need	to	worry	about	getting
permission	to	use	the	blueprint	as	part	of	anything	you	do.	However,	the	operative	word	in	the
Amazon	wording	on	the	blueprint	page	is	most,	which	means	that	you	need	to	verify	the	copyright
for	every	blueprint	you	use	to	ensure	that	no	hidden	requirements	exist	that	oblige	you	to	get	a
license.

Configuring	a	function
Using	the	Lambda	Console	and	a	blueprint	means	that	the	function-creation	process	is	less	about
coding	and	more	about	configuration.	You	need	to	tell	Lambda	which	blueprint	to	use,	but	the	blueprint
contains	the	code	needed	to	perform	the	task.	In	addition,	you	tell	Lambda	which	resources	to	use,	but
again,	it’s	a	matter	of	configuration	and	not	actual	coding.	The	only	time	that	you	might	need	to	perform
any	significant	coding	is	when	a	blueprint	comes	close	to	doing	what	you	want	to	do	but	doesn’t	quite
meet	expectations.

https://www.python.org/downloads/
https://creativecommons.org/publicdomain/zero/1.0/

The	example	that	follows	uses	the	S3	bucket	that	you	see	how	to	create	in	the	“Testing	Your	Setup”
section	of	Chapter	2.	However,	you	can	use	any	bucket	desired.	The	bucket	simply	holds	objects	that
you	want	to	process,	so	it’s	a	matter	of	choosing	the	right	bucket	to	perform	the	required	work.	The
blueprint	used	in	this	section,	s3-get-object-python,	simply	reports	the	metadata	from	the	objects
dropped	into	the	bucket.	Follow	these	steps	to	generate	a	message	every	time	someone	adds	a	file	to
your	S3	bucket:

1.	 Click	s3-get-object-python.
You	see	the	Configure	Event	Sources	page,	shown	in	Figure	10-3.

	Even	though	the	blueprint	automatically	chooses	event-source	information	for	you,	you	can
still	control	the	event	source	in	detail.	For	example,	you	can	change	the	Event	Source	Type	field	to
choose	a	service	other	than	S3,	such	as	Kinesis,	S3,	CloudWatch,	or	DynamoDB.	To	see	the	list	of
other	services,	click	the	S3	icon.	A	drop-down	list	appears	that	contains	the	other	services	that	you
can	interact	with	when	using	this	blueprint.	The	blueprint	shows	that	information	from	the	selected
service	flows	to	Lambda	in	this	particular	case.

2.	 Select	an	object	source	in	the	Bucket	field.
The	example	assumes	that	you	want	to	use	the	bucket	that	Chapter	2	tells	you	how	to	create.
However,	any	bucket	you	can	access	that	receives	objects	regularly	will	work	fine	for	this
example.	AWS	simply	chooses	the	first	S3	bucket,	so	configuring	this	field	is	essential.

3.	 Choose	the	Object	Created	(All)	option	in	the	Event	Type	field.
S3	supports	three	event	types:

Object	Created	(All)
Object	Removed	(All)
Reduced	Redundancy	Lost	Object

Within	these	three	main	event	types	are	subevents	that	better	control	the	information	that	Lambda
sends	to	the	script.	For	example,	when	working	with	Object	Created,	you	can	choose	from	one	of
the	following:

Put
Post
Copy
Complete	Multipart	Upload

Even	though	Lambda	receives	all	the	events,	you	use	the	entries	in	the	Prefix	and	Suffix	fields	to
filter	the	events	so	that	you	react	only	to	the	important	events.	For	example,	you	can	choose	to
include	a	folder	path	or	part	of	a	filename	as	a	prefix	to	control	events	based	on	location	or	name.
Adding	a	file	extension	as	the	suffix	means	that	Lambda	will	process	only	files	of	a	specific	type.
The	example	provides	simple	processing	in	that	it	reacts	to	any	item	created	in	the	bucket,	so	it
doesn’t	use	either	the	Prefix	or	Suffix	fields.

4.	 Click	Next.

You	see	the	Configure	Function	page,	shown	in	Figure	10-4.	As	with	the	Configure	Event	Sources
page,	it	pays	to	check	out	the	Runtime	field.	In	this	case,	you	can	choose	from	a	number	of	options,
everything	from	Python	2.7	to	Java	8.	You	can	even	choose	Python	3.6.	Even	when	the	blueprint
description	tells	you	that	it	supports	a	specific	language,	you	often	have	a	choice	of	other	languages
to	use	as	well.

5.	 Type	MyFunction	in	the	Name	field.
Normally,	you	provide	a	more	descriptive	function	name,	but	this	name	will	do	for	the	example
and	make	it	easier	to	locate	the	function	later	when	you	want	to	remove	it.

6.	 Scroll	down	to	the	next	section	of	the	page.
You	see	the	code	used	to	implement	the	function,	as	shown	in	Figure	10-5.	As	a	developer,	you	can
choose	to	use	the	existing	function,	edit	the	code	inline	to	modify	function	processing,	upload	a
new	function	in	the	form	of	a	.zip	file,	or	obtain	a	function	file	from	Amazon	S3.	The	point	is	that
a	blueprint	provides	a	starting	place	for	developers	but	doesn’t	lock	you	into	any	particular
implementation.	For	now,	the	example	assumes	that	you	have	chosen	to	use	the	default
implementation.

	Notice	that	the	Python	code	contains	a	function	(specified	by	the	def	keyword)	named
lambda_handler.	This	function	handles	(processes)	the	information	that	S3	passes	to	it.	Every
language	you	use	has	a	particular	method	for	defining	functions;	Python	uses	this	method.	As	part	of
configuring	the	Lambda	function,	you	need	to	know	the	name	of	the	handler	function.

7.	 Scroll	down	to	the	next	section	of	the	page.
You	see	two	sections:	the	Lambda	Function	Handler	and	Role	section	and	the	Advanced	Settings
section,	as	shown	in	Figure	10-6.	The	blueprint	automatically	defines	the	Handler	field	for	you.
Note	that	it	contains	the	name	lambda_handler	as	the	handler	name.	When	you	use	custom	code,
you	must	provide	the	name	of	the	function	that	handles	the	code	in	this	section.
The	first	part	of	the	entry,	lambda_function,	is	the	name	of	the	file	that	contains	the	handler
function.	As	with	the	function	name,	the	blueprint	automatically	provides	the	appropriate	name	for
you.	However,	if	you	upload	a	file	containing	the	code,	you	must	provide	the	filename	(without
extension)	as	the	first	entry.	Consequently,	lambda_function.lambda_handler	provides	the
name	of	the	file	and	associated	handler	function.	The	filename	is	separated	from	the	handler
function	name	by	a	period.

8.	 Choose	Create	New	Role	from	Templates	in	the	Role	field.
You	must	tell	AWS	what	rights	to	use	when	executing	the	lambda	code.	The	environment	provides
several	default	roles,	or	you	can	create	a	custom	role	to	use	instead.	The	example	uses	a	default
role.

	When	you	choose	Create	a	Custom	Role,	AWS	opens	a	new	page	containing	the	role
definition,	as	shown	in	Figure	10-7.	AWS	fills	in	the	details	for	you.	However,	you	can	click	View

Policy	Document	to	see	precisely	what	rights	you’re	granting	to	the	lambda	function.
If	you	have	an	existing	role	you	want	to	use,	you	select	Choose	an	Existing	Role	in	the	Role	field.
The	page	changes	to	include	an	Existing	Role	field	that	you	can	use	to	choose	the	existing	role.
This	option	becomes	available	only	when	you	have	already	defined	a	role	in	the	past.

9.	 Type	S3ToLambda	in	the	Role	Name	field.
You	must	provide	a	name	for	your	role,	even	when	using	a	template.

10.	 Select	S3	Object	Read-only	Permissions	in	the	Policy	Templates	field.
The	policies	define	how	Lambda	interacts	with	the	service.	You	must	choose	a	policy	that	reflects
this	need.	There	is	only	one	default	S3	template	—	one	that	allows	read-only	access	to	objects,
which	is	the	safest	option.

11.	 Click	Next.
The	Review	page,	shown	in	Figure	10-8,	shows	the	settings	for	this	function.

12.	 Click	Create	Function.
If	you	chose	not	to	enable	the	function,	the	function	exists	but	doesn’t	do	anything.	You	aren’t
incurring	any	costs	at	this	point.	AWS	displays	the	page	shown	in	Figure	10-9.	Note	the	Test	button
in	the	upper-left	corner.	Clicking	this	button	tests	the	function	but	also	causes	the	function	to	incur
costs.

FIGURE	10-3:	Define	the	event	source	you	want	to	use.

FIGURE	10-4:	Name	and	describe	your	function.

FIGURE	10-5:	Changing	the	function	code	is	as	easy	as	editing	it	in	place	if	desired.

FIGURE	10-6:	Define	the	execution	specifics	of	the	Lambda	function.

FIGURE	10-7:	Define	the	execution	specifics	of	the	lambda	function.

FIGURE	10-8:	Verify	that	the	function	settings	are	correct.

FIGURE	10-9:	The	function	is	ready	to	use.

Using	ensembles	for	functions
Sometimes	you	can	accomplish	some	incredibly	interesting	tasks	without	performing	any	coding	at	all
by	creating	ensembles	of	functions	available	as	blueprints.	For	example,	you	can	use	the	s3-get-object
blueprint	to	retrieve	objects	from	an	S3	bucket	of	specific	types	and	then	pass	the	object	onto
DynamoDB,	where	another	Lambda	function,	such	as	microservice-http-endpoint,	passes	it	onto	a
microservice	that	your	company	owns	for	further	processing.

You	can	even	double	up	on	blueprints.	The	same	DynamoDB	content	can	trigger	another	Lambda
function,	such	as	simple-mobile-backend,	to	send	alerts	to	mobile	users	about	new	content.	You	can
achieve	all	these	tasks	without	any	significant	coding.	All	you	really	need	to	do	is	think	a	little	outside
the	box	as	to	how	you	can	employ	the	blueprints	that	Amazon	provides	and	combine	them	in	interesting
ways.

Most	of	the	Amazon	blueprints	are	used	for	other	purposes	online.	For	example,	you	can	see	how	to
modify	the	s3-get-object-python	blueprint	to	accommodate	a	product	named	Logentries
(https://logentries.com/)	at	https://logentries.com/doc/s3-ingestion-with-lambda/.
Another	product,	Logsene	(https://sematext.com/logsene/),	also	uses	the	blueprint	as	a	starting
point	(see	details	at	https://github.com/sematext/logsene-aws-lambda-s3).	For	an	example	of
a	combined-service	use,	check	out	the	article	at	https://micropyramid.com/blog/using-aws-
lambda-with-s3-and-dynamodb/,	which	is	about	using	S3	with	DynamoDB.	These	blueprints	get
real-world	use	by	third-party	companies	that	use	the	blueprint	as	a	starting	point	to	do	something	a	lot
more	detailed	and	interesting.

Creating	the	test	setup
Before	you	can	test	your	new	function,	you	need	to	upload	a	file	to	the	bucket	you	create	in	Chapter	2.
This	means	opening	the	S3	Management	Console,	selecting	the	bucket,	and	uploading	a	file	to	it	just	as
you	do	in	Chapter	2.	The	example	assumes	that	you’ve	named	this	file	HappyFace.jpg.

	Filenames	are	case	sensitive.	Consequently,	if	you	name	your	file	happyface.jpg	and	try	to
access	it	from	the	test	code	as	HappyFace.jpg,	the	output	will	tell	you	that	the	code	can’t	access
the	file.	At	first,	you	may	think	that	you	have	a	permissions	problem	because	of	the	error	message
you	receive	from	Amazon.	However,	verifying	the	capitalization	of	the	filenames	you	use	during
the	testing	process	can	save	you	a	lot	of	time	and	frustration.

Testing	the	function
Every	Lambda	handler	function	receives	two	pieces	of	information:	an	event	and	its	context.	The	event
and	context	can	include	any	sort	of	data,	but	to	make	things	simple	during	testing,	the	test	functionality
relies	on	strings,	that	is,	text	that	appears	within	double	quotation	marks	(").	The	text	is	bundled	within
a	pair	of	curly	brackets	({})	so	that	the	test	function	receives	information	just	as	it	normally	would.
The	following	steps	show	how	to	test	your	new	Lambda	function:

1.	 Click	Test.
AWS	displays	the	default	testing	template,	which	is	Hello	World.	You	need	to	select	the	testing
template	for	S3	or	the	test	will	fail.

https://logentries.com/
https://logentries.com/doc/s3-ingestion-with-lambda/
https://sematext.com/logsene/
https://github.com/sematext/logsene-aws-lambda-s3
https://micropyramid.com/blog/using-aws-lambda-with-s3-and-dynamodb/

2.	 Choose	S3	Put	in	the	Sample	Event	Template	field.
You	see	the	Input	Test	Event	page,	shown	in	Figure	10-10.	To	make	this	template	function
correctly,	you	make	three	small	code	changes,	as	the	next	steps	explain.

3.	 Change	the	"key"	entry	as	shown	here:
"key":	"HappyFace.jpg"

4.	 Change	the	"arn"	entry	to	match	the	arn	for	your	bucket.
The	Amazon	Resource	Name	(ARN)	tells	AWS	where	to	find	the	bucket.	The	ARN	for	your	S3
bucket	will	differ	from	the	ARN	I	use	here.	However,	your	ARN	entry	will	look	something	like
this:

"arn":	"arn:aws:s3:::aws4d.test-bucket",

	Make	sure	to	create	the	ARN	correctly.	The	number	of	colons	between	various	elements	is
essential.	The	best	way	to	avoid	problems	is	to	copy	the	ARN	from	a	screen	location	that	you
know	is	correct	and	paste	it	into	your	code.	Otherwise,	you	can	spend	hours	trying	to	find	the	one
missing	or	extra	colon	in	your	code.

5.	 Change	the	"name"	field	to	match	the	name	of	your	bucket.
In	this	case,	you	provide	only	the	bucket	name.	It	should	look	something	like	this:

"name":	"aws4d.test-bucket",

6.	 Change	the	"principleId"	field	to	match	the	name	of	the	file	owner.
You	can	verify	this	name	by	clicking	the	file	entry	in	S3.	Use	the	value	that	appears	in	the	Owner
field	on	the	Overview	tab	for	the	file	in	question.

7.	 Click	Save.
AWS	saves	the	test	code	for	you	and	returns	you	to	the	test	page	shown	in	Figure	10-10.

FIGURE	10-10:	The	test	code	data	to	the	function.

At	this	point,	you	can	click	Test	again.	In	most	cases,	Amazon	won’t	charge	you	anything	because	your
S3	resource	usage	will	remain	within	the	limits	of	the	free	tier.	However,	by	executing	the	test	code,
you	can	incur	a	small	cost.	Figure	10-11	shows	an	example	of	the	output	you	see.	The	output	correctly
shows	that	the	content	type	for	HappyFace.jpg	is	"image/jpeg".

FIGURE	10-11:	The	test	output	correctly	identifies	the	content	type.

There	are	actually	two	output	sections.	Figure	10-11	shows	the	returned	value.	The	test	also	prints	a
value,	as	shown	in	Figure	10-12.	This	information	appears	below	the	return	value	and	tells	you	more
about	the	test.	For	example,	you	see	that	the	test	lasted	312.86	ms	and	that	Amazon	billed	you	for	400
ms	worth	of	resource	time.	More	important,	this	output	differentiates	between	a	returned	value	and	a
printed	value	(as	described	in	more	detail	later	in	the	chapter,	in	the	“Modifying	the	function	code”
section.

FIGURE	10-12:	Tests	can	output	both	a	return	value	and	printed	values.

Fixing	test	function	errors
If	you	make	a	mistake	and	the	test	fails,	you	can	change	the	test	conditions	by	choosing	Actions     
Configure	Test	Event.	You	see	the	test	event	information,	shown	in	Figure	10-10,	where	you	can	make
changes	to	your	setup.	Perform	any	required	changes	and	click	Save	to	replace	the	previous	results.

Checking	the	function	metrics
In	addition	to	various	levels	of	testing,	you	can	also	view	the	metrics	for	your	function	by	clicking	the
Monitoring	tab.	Figure	10-13	shows	typical	metrics	for	Lambda	functions.	In	this	case,	you	see	how
many	times	events	have	triggered	the	function,	the	duration	of	each	call,	and	the	number	of	errors	that
the	functions	have	experienced.

FIGURE	10-13:	Metrics	can	help	you	determine	how	well	the	function	works.

Modifying	the	function	code
The	default	lambda_handler()	code	gives	you	a	good	starting	point,	but	you	may	decide	to	modify	it
to	meet	specific	needs.	In	fact,	if	you	look	at	the	code,	it	already	has	one	suggested	addition	(the	book
shows	a	reformatted	version	of	the	AWS	code	due	to	the	length	of	some	of	the	AWS	code	lines):

def	lambda_handler(event,	context):

				#print("Received	event:	"	+

				#				json.dumps(event,	indent=2))	

				#	Get	the	object	from	the	event	and	show

				#	its	content	type

				bucket	=	event['Records'][0]['s3']['bucket']['name']

				key	=	urllib.unquote_plus(

								event['Records'][0]['s3']['object']['key'].

								encode('utf8'))

				try:

								response	=	s3.get_object(Bucket=bucket,	Key=key)

								print("CONTENT	TYPE:	"	+	response['ContentType'])

								return	response['ContentType']

				except	Exception	as	e:

								print(e)

								print('Error	getting	object	{}	from	bucket	{}.	'	+

												'Make	sure	they	exist	and	your	bucket	is	in'	+

												'	the	same	region	as	this	function.'.

												format(key,	bucket))

								raise	e

The	first	line	prints	the	event	information	received	as	part	of	the	S3	Put	test	event.	The	json.dumps()
method	creates	human-readable	output	with	white	space	to	make	it	easier	to	understand	the	event
values.	Remove	the	comments	from	the	initial	print()	function	so	that	it	now	appears	as

				print("Received	event:	"	+

								json.dumps(event,	indent=2))

Click	Save	and	Test	to	save	the	code	change.	The	output	changes	to	show	the	additional	print()
output,	which	shows	the	information	the	function	receives	as	input:

START	RequestId:	91ad569c-364c-11e7-a6b1-db58dabe4ac3

			Version:	$LATEST

Received	event:	{

		"Records":	[

				{

						"eventVersion":	"2.0",

						"eventTime":	"1970-01-01T00:00:00.000Z",

						"requestParameters":	{

								"sourceIPAddress":	"127.0.0.1"

						},

						"s3":	{

								"configurationId":	"testConfigRule",

								"object":	{

										"eTag":	"0123456789abcdef0123456789abcdef",

										"key":	"HappyFace.jpg",

										"sequencer":	"0A1B2C3D4E5F678901",

										"size":	1024

								},

								"bucket":	{

										"ownerIdentity":	{

												"principalId":	"Your	ID	Here"

										},

										"name":	"aws4d.test-bucket",

										"arn":	"arn:aws:s3:::aws4d.test-bucket"

								},

								"s3SchemaVersion":	"1.0"

						},

						"responseElements":	{

								"x-amz-id-2":

											"EXAMPLE123/5678abcdefghijklambdaisawesome/

											mnopqrstuvwxyzABCDEFGH",

								"x-amz-request-id":	"EXAMPLE123456789"

						},

						"awsRegion":	"us-east-1",

						"eventName":	"ObjectCreated:Put",

						"userIdentity":	{

								"principalId":	"EXAMPLE"

						},

						"eventSource":	"aws:s3"

				}

]

}

CONTENT	TYPE:	image/jpeg

END	RequestId:	91ad569c-364c-11e7-a6b1-db58dabe4ac3

REPORT	RequestId:	91ad569c-364c-11e7-a6b1-db58dabe4ac3

			Duration:	241.10	ms			Billed	Duration:	300	ms

The	point	is	that	you	can	begin	with	a	simple	function	but	then	move	toward	additional	complexity,
eventually	building	a	complex	function	to	perform	required	tasks.	Starting	with	the	blueprint,	as	shown
in	this	section,	doesn’t	mean	that	the	code	must	remain	simple.	All	you’re	really	doing	is	creating	a
useful	starting	point	from	which	to	build	the	code	you	need.

	Note	the	print()	call	that	displays	response['ContentType'].	You	have	access	to	a

wealth	of	information	from	the	bucket,	as	described	at
http://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Client.get_object

Of	course,	you	can	use	calls	other	than	s3.get_object()	to	obtain	other	sorts	of	information.

Deleting	the	function
You	don’t	want	to	keep	a	function	around	any	longer	than	necessary	because	each	function	invocation
costs	money.	One	way	to	keep	costs	down	is	to	disable	the	function	by	clicking	the	Enabled	link	for	the
function	in	the	Event	Sources	tab	and	choosing	Disable	when	you	see	the	configuration	dialog	box.	The
function	will	continue	to	perform	its	task	as	long	as	just	one	of	the	event	sources	remains	enabled,	so
you	must	disable	all	event	sources	to	stop	the	function	from	responding	to	events.

At	some	point,	you	simply	won’t	need	the	function,	and	keeping	it	around	is	a	recipe	for	unexpected
costs.	To	delete	a	function,	choose	Actions     Delete	Function.	AWS	will	ask	whether	you’re	sure	that
you	want	to	delete	the	function.	Click	Delete	to	remove	the	function	and	all	its	configuration
information.

Interacting	with	Simple	Queue	Services	(SQS)
The	Simple	Queue	Service	(SQS)	acts	as	a	place	where	you	can	temporarily	send	messages.
Depending	on	how	you	configure	your	setup,	one	service	can	drop	messages	into	the	queue	and	another
can	pick	them	up	for	processing.	The	result	is	an	asynchronous	method	of	detail	with	messages	of
various	sorts.	The	use	of	queues	lets	you	even	out	peaks	and	valleys	in	data	requests	so	that	you	can
use	services	more	efficiently.	The	following	sections	get	you	started	with	SQS.

Creating	a	queue	using	the	console
Before	you	can	do	much	with	SQS,	you	need	a	queue.	It’s	possible	to	create	a	queue	using	the	console,
CLI,	or	programmatically.	This	section	uses	the	console	to	create	the	queue	simply	to	allow	you	to	see
how	the	console	appears.	Later	sections	look	at	SQL	using	both	CLI	and	Python	programming
techniques.	The	following	steps	help	you	create	the	queue.

1.	 Sign	into	AWS	using	your	user	account.
2.	 Navigate	to	the	SQS	Console	at	https://aws.amazon.com/sqs/.

You	see	a	Welcome	page	that	contains	interesting	information	about	SQS	and	what	it	can	do	for
you.	However,	you	don’t	see	the	actual	console	at	this	point.

3.	 Click	Get	Started	with	Amazon	SQS	for	Free.
You	see	a	second	helpful	page	of	SQS	information.

4.	 Click	Get	Started	Now.
You	finally	see	a	Create	New	Queue	page,	as	shown	in	Figure	10-14.	You	can	create	a	standard
queue	or	a	First	In/First	Out	(FIFO)	queue.	The	two	queue	types	are	quite	different,	and	you	need
to	exercise	care	in	choosing	one	over	the	other.	The	FIFO	queue	is	the	best	option	when	working	in
a	transactional	environment	in	which	you	require	precise	message	control.	The	standard	queue
serves	most	development	needs.

5.	 Type	TestQueue	in	the	Queue	Name	field.

http://boto3.readthedocs.io/en/latest/reference/services/s3.html#S3.Client.get_object
https://aws.amazon.com/sqs/

Every	queue	you	own	must	have	a	unique	name.
6.	 Verify	that	the	value	in	the	Region	field	is	correct.

You	should	normally	use	the	same	region	you	use	for	your	EC2	and	S3	setups.	If	the	region	value	is
incorrect,	choose	a	new	value	from	the	region	drop-down	list	at	the	top,	right	side	of	the	page.

7.	 Choose	Standard	Queue	and	then	click	Quick-Create	Queue.
You	see	the	SQS	Console,	shown	in	Figure	10-15.	The	console	starts	with	the	new	queue	selected
so	that	you	can	see	queue	details.	The	console	shows	that	the	queue	currently	has	no	messages
available	and	no	messages	being	processed.

	You	also	have	an	option	to	configure	the	queue	before	you	use	it.	In	this	case,	you	click
Configure	Queue	instead.	This	option	lets	you	change	the	default	parameters,	such	as	the	maximum
message	size	and	the	number	of	days	that	the	queue	retains	messages.	In	most	cases,	the	default
parameters	work	fine	for	test	setups	used	by	developers.

FIGURE	10-14:	Choose	between	a	standard	and	FIFO	queue	based	on	application	requirements.

FIGURE	10-15:	The	SQS	Console	shows	the	queues	you	have	in	place	and	their	status.

Working	with	the	CLI	to	configure	SQS
You	can	use	the	CLI	to	perform	every	task	you	can	think	of	that	you	normally	perform	in	the	console,
including	creating	queues.	Look	carefully	at	Figure	10-15	to	see	a	URL	field	for	TestQueue.	The	URL
field	is	essential	because	it	provides	the	key	for	accessing	the	queue	you	create.	To	test	queue	access,
try	creating	a	message	by	typing	aws	sqs	send-message	--queue-url	https://sqs.us-west-
2.amazonaws.com/889745118473/TestQueue	--message-body	"Hello	There!"	and	pressing	Enter.
To	make	this	command	work,	you	must	replace	the	--queue-url	value	with	the	URL	for	your	queue.
You	see	the	output	shown	in	Figure	10-16.	If	you	update	the	console	display	at	this	point,	you	see	that
the	queue	now	has	one	message	in	it.

FIGURE	10-16:	The	CLI	command	sends	a	message	to	the	queue.

To	retrieve	the	message,	you	type	aws	sqs	receive-message	--queue-url	https://sqs.us-west-
2.amazonaws.com/889745118473/TestQueue	--output	text	and	press	Enter.	The	use	of	text	output
makes	the	output	smaller	and	easier	to	see.	Remember	again	to	use	the	URL	for	your	queue	and	not	the
one	in	the	book.	The	output	appears	in	Figure	10-17.	Note	the	long	series	of	seemingly	incoherent
letters	and	numbers	at	the	end	of	the	output,	starting	with	AQEB.	This	long	string	is	the	receipt	handle,
which	you	need	to	delete	the	message.

FIGURE	10-17:	The	output	shows	the	original	information,	along	with	a	number	of	other	values.

Viewing	the	message	doesn’t	remove	it	from	the	queue.	To	remove	the	message,	you	must	actually
delete	it.	To	delete	a	message,	you	need	the	receipt	handle,	shown	in	Figure	10-17.	For	example,	to
delete	the	message	in	the	example,	you	enter	aws	sqs	delete-message	--queue-url	https://sqs.us-
west-2.amazonaws.com/889745118473/TestQueue	--receipt-handle
AQEBrFMb1m9xlPFSf0PHY0p+o+Bh3/q3cl6CwxLY4+OOWsu1qcsevjqiSKiOKz5w85TLBUp2+2t76pzHMxMo6pVABwJODtWy6dzbh5k/qBxLQrodzOjZJIhZM0dKLnH8GftiTSqC0msgZg59R3K
and	press	Enter.	Using	the	console	definitely	makes	some	tasks	harder,	but	you	can	copy	the	receipt
handle	directly	from	the	screen	and	then	paste	it	back	as	necessary.

Writing	a	program	in	Python
Python	and	boto3	makes	working	with	SQS	significantly	easier	than	working	with	the	CLI.	You	use	the
following	code	to	create	a	new	message.	(You	can	access	this	example	code	in	the	AWS4D4D;	10;
SQS	Check.ipynb	file	for	this	chapter	in	the	downloadable	source,	as	explained	in	the	Introduction.)

import	boto3	

sqs	=	boto3.client('sqs')	

response	=	sqs.send_message(

				QueueUrl	=	"https://sqs.us-west-2.amazonaws.com"	+

				"/889745118473/TestQueue",

				MessageBody	=	"Hello	There!")

print(response)

The	output	contains	'HTTPStatusCode':	200	when	you	successfully	create	a	new	message.	The	idea
is	the	same	as	using	the	CLI.	However,	the	implementation	is	a	little	shorter.	Using	Python	also	makes
obtaining	just	the	content	you	need	easier.	The	following	code	retrieves	the	message	from	the	queue:

msg	=	sqs.receive_message(

				QueueUrl	=		"https://sqs.us-west-2.amazonaws.com"	+

				"/889745118473/TestQueue")

print(msg['Messages'][0]['Body'])

The	output	shows	only	the	message	body	in	this	case,	which	consists	of	"Hello	There!".	A	single
message	response	is	a	dict	that	can	contain	multiple	messages,	so	you	access	each	message	as	an
individual	list	item.	Within	the	message	are	attributes,	such	as	Body,	that	you	use	to	access	individual
data	members.

Deleting	a	message	is	much	easier	than	working	with	the	CLI.	The	following	code	shows	you	how.
sqs.delete_message(

				QueueUrl	=		"https://sqs.us-west-2.amazonaws.com"	+

				"/889745118473/TestQueue",

				ReceiptHandle	=	msg['Messages'][0]['ReceiptHandle'])

The	output	shows	the	response	metadata.	The	important	entry	is	'HTTPStatusCode':	200,	which
tells	you	that	the	deletion	occurred	as	intended.

Using	Lambda	to	create	entries
The	previous	section	of	the	chapter	should	give	you	an	idea	of	how	you	might	like	SQS	and	S3	using
Lambda.	Look	again	at	the	“Modifying	the	function	code”	section,	earlier	in	the	chapter.	You	now	have
the	ability	to	change	how	that	code	works	so	that	it	uses	the	queue	you	just	created	to	contain	the
information	about	the	file.	Here’s	an	updated	version	of	the	code	in	that	section	with	the	changes
marked	in	bold	type,	but	this	code	will	send	a	message	to	SQS	in	addition	to	performing	the	print
tasks:

from	__future__	import	print_function	

import	json

import	urllib

import	boto3	

print('Loading	function')	

s3	=	boto3.client('s3')

sqs	=	boto3.client('sqs')		

def	lambda_handler(event,	context):

				#print("Received	event:	"	+

				#				json.dumps(event,	indent=2))	

				#	Get	the	object	from	the	event	and	show

				#	its	content	type

				bucket	=	event['Records'][0]['s3']['bucket']['name']

				key	=	urllib.unquote_plus(

								event['Records'][0]['s3']['object']['key'].

								encode('utf8'))

				try:

								response	=	s3.get_object(Bucket=bucket,	Key=key)

								print("CONTENT	TYPE:	"	+	response['ContentType'])

								sqs_resp	=	sqs.send_message(

												QueueUrl	=

												"https://sqs.us-west-2.amazonaws.com"	+

												"/889745118473/TestQueue",

												MessageBody	=

												"CONTENT	TYPE:	"	+	response['ContentType'])

								print(sqs_resp)

								return	response['ContentType']

				except	Exception	as	e:

								print(e)

								print('Error	getting	object	{}	from	bucket	{}.	'	+

												'Make	sure	they	exist	and	your	bucket	is	in'	+

												'	the	same	region	as	this	function.'.

												format(key,	bucket))

								raise	e

Note	that	you	must	add	the	SQS	client	outside	the	lambda_handler()	function.	The	code	in	the
lambda_handler()	function	looks	almost	precisely	the	same	as	the	code	used	in	the	Python	example.
Working	through	your	code	additions	using	Python	reduces	the	time	and	effort	in	making	Lambda
interoperability	work.	The	printed	output	will	look	the	same	as	when	you	execute	the	code	in
Anaconda.

Unfortunately,	the	code	won’t	run	right	now	because	unlike	your	Anaconda	installation,	the	Lambda
function	doesn’t	have	permission.	To	add	the	required	permission,	select	the	Permissions	tab	for	the
queue	in	the	SQS	Console.	As	shown	in	Figure	10-18,	the	queue	currently	lacks	a	permission
statement,	which	means	that	only	the	queue	owner	can	access	the	queue.

FIGURE	10-18:	Lambda	must	have	permission	to	access	the	queue.

Click	Add	a	Permission	to	add	a	new	permission	statement	to	the	queue.	You	see	the	Add	a	Permission
to	TestQueue	dialog	box,	shown	in	Figure	10-19.

FIGURE	10-19:	Lambda	must	have	permission	to	access	the	queue.

Given	that	you	want	everyone	to	have	access	to	the	queue	to	add,	retrieve,	and	possibly	delete
messages,	select	Everybody.	In	the	Actions	field,	select	SendMessage,	ReceiveMessage,	and
DeleteMessage.	You	really	don’t	want	to	give	everyone	any	of	the	other	permissions.	Click	Add
Permission,	and	you	see	the	new	permission	shown	in	Figure	10-20.

FIGURE	10-20:	Everyone	now	has	the	required	message	permissions.

At	this	point,	you	can	click	Test	in	the	Lambda	Console	to	test	the	new	code.	The	code	should	succeed
as	it	did	before.	The	only	difference	is	that	the	printed	output	now	contains	the	content	from	the	SQS
client	print()	statement.

However,	you	need	to	verify	that	everything	worked	as	it	should	by	going	back	to	the	SQS	Console.
Select	TestQueue	and	choose	Queue	Actions     View/Delete	Messages.	You	see	the	View/Delete
Messages	in	Test	Queue	dialog	box,	shown	in	Figure	10-21.

FIGURE	10-21:	Use	the	SQS	Console	features	to	view	the	messages.

Click	Start	Polling	for	Messages.	You	see	the	single	message,	with	the	correct	content,	as	shown	in
Figure	10-22.	If	desired,	you	can	select	this	message	and	click	Delete	Messages	to	remove	it.	AWS
will	ask	whether	you’re	sure	before	making	the	deletion.

FIGURE	10-22:	SQS	lets	you	review	the	messages	from	Lambda.

Part	4
Interacting	with	Databases

IN	THIS	PART	…
Install	and	configure	the	Relational	Database	Service	(RDS).

Work	with	MySQL.

Modify	option	groups,	events,	and	parameter	groups.

Upload	and	download	data.

Interact	with	NoSQL	databases	using	DynamoDB.

Chapter	11
Getting	Basic	DBMS	Using	RDS

IN	THIS	CHAPTER
	Defining	the	RDS	feature	set
	Working	with	RDS
	Building	a	server	to	support	applications	that	use	RDS
	Adding	load	balancing	and	scaling	features

Business	thrives	on	data	—	lots	of	data	—	most	of	it	in	extremely	complex	forms.	It	isn’t	a	recent
phenomenon	either.	Some	of	the	most	persuasive	arguments	for	creating	computers	in	the	first	place
focused	on	the	need	to	manage	data	efficiently.	So	you	shouldn't	be	surprised	to	find	that	AWS	supports
the	Relational	Database	Service	(RDS)	and	that	it	provides	robust	support	for	complex	data	setups.	In
fact,	you	can	likely	use	the	same	DBMS	in	the	cloud	that	you	use	on	your	local	servers.	The	major
difference	between	the	two,	of	course,	is	that	cloud-based	data	storage	offers	greater	convenience
while	the	private	network	data	storage	tends	to	offer	better	security.	Obviously,	there	are	a	great	many
other	differences,	which	this	chapter	covers.

RDS	is	complex	enough	that	you	likely	have	team	members	who	do	nothing	but	perform	management
tasks.	However,	just	about	every	developer	spends	at	least	a	little	time	working	with	RDS	in	a
management	capacity,	so	this	chapter	also	discusses	techniques	that	you	can	use	to	manage	RDS.
Administrators	tend	to	use	the	management	console	exclusively	to	perform	management	tasks,	but
developers	also	use	the	Command	Line	Interface	(CLI)	and	custom	application	code,	so	this	chapter
discusses	all	three	options.	In	most	cases,	even	developers	perform	initial	management	tasks	using	the
management	console	simply	because	the	task	is	complex	and	the	management	console	makes	things
easier.

This	chapter	doesn’t	introduce	you	to	the	inner	workings	of	RDS	so	that	you	can	create	complex
DBMS	configurations.	For	one	thing,	simply	too	many	options	are	available	to	do	the	topic	justice	in
just	one	chapter,	or	even	in	an	entire	book.	However,	you	do	need	a	simple	database	to	use	to	work
with	the	example	code	in	the	chapter,	so	you	do	find	out	how	to	get	started	creating	your	own	DBMS
using	RDS.	Of	course,	this	leads	into	creating	an	application	that	uses	the	sample	database.

The	final	section	of	the	chapter	discusses	load	balancing	and	scaling	from	a	developer	perspective.	An
administrator	might	worry	about	getting	maximum	speed	using	the	fewest	resources,	but	a	developer
must	consider	the	need	to	match	a	test	server	to	a	production	server	well	enough	to	perform	credible
application	testing.	The	difference	in	perspective	is	important,	so	this	chapter	focuses	on	the	developer
view	of	things.	Of	course,	you	also	get	the	basics	of	working	with	load	balancing	and	scaling.

Considering	the	Relational	Database	Service
(RDS)	Features

The	main	purpose	of	a	relational	database	is	to	organize	and	manage	consistent	pieces	of	data	using
tables	that	relate	to	each	other	through	key	fields.	For	example,	an	employee	table	may	have	a	relation
to	a	telephone	number	table	connected	through	the	employee	ID.	Because	an	employee	can	have
multiple	telephone	numbers,	each	single	entry	in	the	employee	table	can	have	multiple	connections	to
the	telephone	number	table.	Although	this	is	a	gross	simplification	of	Relational	Database	Management
Systems	(RDBMS),	it	serves	a	purpose	for	this	chapter.

To	perform	management	tasks	correctly,	you	must	have	a	reliable	Database	Management	System
(DBMS)	built	upon	a	specific	engine.	The	database	engine	you	choose	determines	the	characteristics
and	flexibility	of	the	management	environment.	In	addition,	the	database	engine	can	also	affect	how
well	the	RDBMS	scales	when	you	increase	load,	data	size,	or	other	factors.	Also	important	is	to	have
the	means	to	create	a	copy	of	your	database	using	both	replication	(the	copying	of	individual	data
elements)	and	cloning	(the	copying	of	the	entire	database).	The	following	sections	describe	how	RDS
helps	you	achieve	all	these	goals.

Choosing	a	database	engine
AWS	RDS	supports	a	number	of	database	engines.	Of	course,	supporting	a	single	RDBMS	might	at
first	seem	to	do	the	trick	because	they	all	essentially	do	the	same	thing.	However,	you	must	consider	a
number	of	factors	when	choosing	a	database	engine.	These	factors	include	(in	order	of	importance):

The	RDBMS	currently	used	for	most	of	your	existing	projects
Coding	needs,	such	as	the	capability	to	execute	scripts	in	specific	ways
Interoperability	needs,	especially	when	working	with	other	organizations
Automation	needs,	such	as	the	capability	to	execute	scripts	in	response	to	events	or	at	a	specific
time
Security	concerns	that	may	override	other	needs	for	data	storage
Data	storage	size	or	type	requirements
Management	requirements

	For	developers,	the	overwhelming	first	priority	in	choosing	an	RDBMS	is	using	the	same
database	that	the	organization	uses	to	ensure	a	smooth	transition	from	the	test	to	the	production
environment.	An	exception	to	this	rule	occurs	when	the	organization	plans	to	consolidate	RDBMS
products	and	is	therefore	moving	to	a	new	product	to	meet	specific	needs.	Given	that	the	number
of	RDBMS	engines	available	today	is	huge,	RDS	is	unlikely	to	ever	support	them	all.	As	of	this
writing,	RDS	supports	six	database	engines,	each	of	which	has	characteristics	in	its	favor,	as
explained	in	the	following	list:

Amazon	Aurora:	This	product	is	essentially	a	MySQL	clone.	If	you	like	MySQL,	you	probably
like	Amazon	Aurora	as	well.	However,	according	to	a	number	of	sites,	Amazon	has	managed	to
make	Aurora	faster,	more	scalable,	and	inclusive	of	a	number	of	interesting	additional	features.	Of
course,	you	pay	a	higher	price	for	Amazon	Aurora	as	well,	so	if	you	don’t	need	the	extra	features,

using	MySQL	is	probably	a	better	choice.	The	articles	at	http://2ndwatch.com/blog/deeper-
look-aws-aurora/	and	http://izoratti.blogspot.com/2014/11/it-does-not-matter-
if-aurora-performs.html	provide	a	more	detailed	comparison	of	Amazon	Aurora	to	MySQL.

MariaDB:	This	is	another	MySQL	clone,	but	it	also	has	a	significant	number	of	additional	features
that	you	can	read	about	at	https://mariadb.com/kb/en/mariadb/mariadb-vs-mysql-
features/.	You	need	to	consider	a	few	major	differences	when	choosing	this	product.	For	one
thing,	MariaDB	is	pure	open	source,	which	means	that	it	uses	a	single	license	that	is	easier	to
manage	than	MySQL.	However,	because	of	the	licensing,	enterprise	customers	deal	with
equivalent	open	source	implementations	in	MariaDB	(such	as	thread	pool),	instead	of	the	original
MySQL	implementations,	which	can	result	in	compatibility	issues.	MariaDB	is	also	currently
locked	at	the	MySQL	5.5	level,	so	you	may	not	have	access	to	the	latest	MySQL	features	needed	to
make	your	application	work.
MySQL:	This	product	isn’t	quite	as	old	as	some	of	the	other	RDBMS	offerings	that	Amazon
supports,	but	it	does	serve	as	the	standard	to	which	other	products	are	judged.	The	problem	with
being	the	leader	is	that	everyone	takes	pot	shots	at	you	and	tries	to	unsettle	your	customers,	which
is	precisely	what	is	happening	to	MySQL.	You	can	read	about	some	of	the	pros	and	cons	of
choosing	MySQL	at	http://www.myhostsupport.com/index.php?/News/NewsItem/View/58
and	https://www.smartfile.com/blog/the-pros-and-cons-of-mysql/.	The	fact	is	that
MySQL	sets	the	standard,	so	it	likely	provides	the	most	stable	and	reliable	platform	that	you	can
choose	when	these	issues	are	the	main	concern.
Oracle:	This	product	has	been	around	for	years,	so	it	has	a	long	history	of	providing	great	support
and	significant	flexibility.	What	sets	Oracle	apart	from	a	few	other	products,	such	as	MySQL	and
SQL	Server,	is	that	Linux	administrators	and	developers	tend	to	prefer	it.	As	with	MySQL,	Oracle
is	a	standard	setter	that	everyone	likes	to	compare	with	other	products,	even	when	those
comparisons	aren’t	a	good	match.	Unlike	other	products	in	this	list,	viewing	Oracle	Cloud	as	a
separate	product	from	the	enterprise	setup	is	essential;	the	two	products	aren’t	completely
compatible	and	have	differing	feature	sets.	You	can	find	some	pros	and	cons	of	using	Oracle	Cloud
at	http://www.socialerp.com/oracle-private-cloud.php.

PostgreSQL:	This	is	a	combination	product	in	that	most	people	view	it	as	an	open	source	version
of	Oracle	but	also	go	to	great	lengths	to	compare	it	with	MySQL.	Developers	like	PostgreSQL
because	it	provides	a	significant	number	of	features	that	MySQL	tends	not	to	support.	In	addition,
the	transition	for	developers	from	Oracle	or	SQL	Server	is	relatively	easy	because	PostgreSQL
tends	to	follow	their	lead.	However,	MySQL	tends	to	provide	better	ease	of	use	and	is	somewhat
faster	than	PostgreSQL.	You	can	find	some	interesting	pros	and	cons	about	this	product	at
http://www.anchor.com.au/hosting/dedicated/mysql_vs_postgres	and
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-

postgresql-a-comparison-of-relational-database-management-systems.

SQL	Server:	This	product	provides	essential	RDBMS	functionality	with	a	considerable	number
of	add-ons.	The	important	thing	to	remember	about	SQL	Server	is	that	Microsoft	created	it	for
Windows,	and	everything	about	this	product	reflects	that	beginning.	In	general,	administrators	find
that	working	with	SQL	Server	is	relatively	easy	unless	they	need	to	use	a	broad	range	of	those	add-
ons.	Developers	like	SQL	Server	because	it	integrates	well	with	the	Microsoft	language	products.
You	can	read	pros	and	cons	about	this	product	at

http://2ndwatch.com/blog/deeper-look-aws-aurora/
http://izoratti.blogspot.com/2014/11/it-does-not-matter-if-aurora-performs.html
https://mariadb.com/kb/en/mariadb/mariadb-vs-mysql-features/
http://www.myhostsupport.com/index.php?/News/NewsItem/View/58
https://www.smartfile.com/blog/the-pros-and-cons-of-mysql/
http://www.socialerp.com/oracle-private-cloud.php
http://www.anchor.com.au/hosting/dedicated/mysql_vs_postgres
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems

http://www.infoworld.com/article/3013601/application-development/new-features-

in-sql-server-2016.html,
http://www.theregister.co.uk/2013/05/28/sql_server_2012_second_look/,	and
http://www.sqlserverf1.com/pros-and-cons-of-running-sql-server-on-premise-vs-

azure-cloud/.

	Even	with	this	short	overview	of	the	various	choices,	you	can	see	the	need	to	research	your
RDS	choice	completely	before	committing	to	a	particular	option.	In	some	cases,	you	may	need	to
configure	a	dummy	setup	and	perform	tests	to	see	which	option	works	best	for	your	particular
application.	After	you	begin	to	fill	the	RDBMS	with	real-world	data,	moving	to	another	database
engine	is	usually	an	expensive,	error-prone,	and	time-consuming	task.	The	smart	developer	takes
additional	time	to	make	a	good	choice	at	the	outset,	rather	than	discover	that	a	particular	choice	is
a	mistake	after	the	application	moves	into	the	development	(or,	worse	yet,	production)	stages.

Understanding	the	need	to	scale	efficiently
The	capability	of	your	application	to	scale	depends	on	its	access	to	resources.	AWS	provides
consistent	access	to	its	resources	by	using	autoscaling,	which	is	a	combination	of	automation	and
scaling.	Monitors	generate	events	that	tell	services	when	an	application	requires	additional	resources,
such	as	servers,	to	maintain	a	constant	level	of	output	so	that	the	user	doesn’t	see	any	difference
between	a	light	and	a	heavy	load.	Even	though	the	real-world	performance	of	autoscaling	may	not
provide	precisely	this	level	of	consistency	(see	the	“Problems	with	autoscaling”	sidebar	in	Chapter	6
for	details),	the	automation	does	work	well	enough	so	that	most	users	won’t	complain	from	an	AWS
perspective.

	A	problem	with	RDS,	or	any	other	database	service	for	that	matter,	is	that	resources	include
data.	No	matter	what	you	do,	throwing	additional	resources	at	data	management	issues	will	only
go	so	far.	At	some	point,	the	sheer	weight	of	the	data	becomes	an	encumbrance.	Searching	through
several	million	records	to	find	the	one	record	you	need	takes	time,	no	matter	how	many	servers
you	allow	and	how	much	memory	you	provide.	With	this	time	factor	in	mind,	you	need	to
consider	these	issues	when	working	with	AWS	to	create	an	application	that	scales	well	when
large	amounts	of	data	are	involved:

Use	the	right	RDBMS:	Amazon	makes	a	number	of	database	managers	available,	as	described	in
the	preceding	section	of	this	chapter,	“Choosing	a	database	engine.”	Even	though	your	first
inclination	is	to	use	the	database	engine	that	you	use	most	commonly	in	your	organization	now,
speed	considerations	may	trump	consistency	in	this	case.	If	you	want	your	application	to	scale
well,	you	may	need	to	choose	an	RDBMS	that	provides	optimal	speed	in	a	cloud	environment.
Organize	the	data	using	best	practices:	This	book	doesn’t	address	DBMS-specific	concerns,
such	as	the	use	of	normalization.	The	use	of	best	practices	gives	you	a	good	starting	point	to	ensure
that	your	application	scales	well.	A	best	practice	comes	into	play	when	experimentation	shows	that

http://www.infoworld.com/article/3013601/application-development/new-features-in-sql-server-2016.html
http://www.theregister.co.uk/2013/05/28/sql_server_2012_second_look/
http://www.sqlserverf1.com/pros-and-cons-of-running-sql-server-on-premise-vs-azure-cloud/

it	usually	has	good	results.
Experiment	to	find	good	RDBMS	optimizations:	Knowledge	resources	usually	focus	on	the
general	case	because	no	one	can	possibly	know	about	your	specific	needs.	However,	trade-offs
occur	when	you	use	various	general	organizational	and	optimization	techniques,	and	you	need	to
consider	the	price	of	each	trade-off	when	compared	to	application	speed	and	the	application’s
capability	to	scale	well	under	load.	In	some	cases,	relying	on	a	best	practice	that	works	well	in
general	may	not	produce	the	desired	result	in	your	specific	case.
Play	with	AWS	to	determine	whether	additional	resources	will	help:	AWS	may	really	be	able
to	help	you	overcome	some	speed	and	scaling	issues	by	allowing	you	access	to	resources	that	you
wouldn’t	normally	have.	The	AWS	documentation	offers	some	clues	as	to	when	allocating
additional	resources	(and	spending	more	to	do	it)	will	yield	a	desired	result.	Unfortunately,	the
only	way	to	verify	that	using	additional	AWS	resources	will	provide	acceptable	gain	for	the	price
paid	is	to	experiment	and	monitor	the	results	of	testing	carefully.

Defining	data	replication
Data	replication	is	often	associated	with	data	availability.	When	a	failure	occurs,	RDS	uses	the	replica
instead	so	that	users	don’t	see	much,	if	any,	reduction	in	application	speed.	Amazon	recommends	that
you	place	your	replica	in	a	different	availability	zone	from	your	main	database	to	ensure	that	the
replica	also	addresses	regional	issues,	such	as	a	natural	disaster.	When	a	failure	occurs	because	of	a
tornado	or	other	natural	disaster	in	one	area,	the	replica	in	a	region	that	has	good	conditions	can	take
over	until	RDS	makes	repairs	to	the	main	database.

	From	a	development	perspective,	you	generally	won’t	see	any	difference	in	coding	an
application	when	using	data	replication.	The	data	replication	occurs	in	the	background	and	the
failover	support	is	invisible	outside	Amazon.	What	you	do	need	to	do	is	perform	setups	to	create
the	data	replication	and	to	monitor	it	once	you	have	it	configured.	If	your	application	is	for
administrators,	you	definitely	need	to	code	these	features	into	your	application.	However,	from	a
data	access	perspective,	no	difference	exists,	so	user-level	applications	require	no	special	code.

Amazon	relies	on	SQL	Server	Mirroring	to	provide	data	replication	when	you	choose	SQL	Server	as
your	RDBMS.	For	replication,	you	can	also	choose	to	use	Multi-AZ
(http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html)	when
using	any	of	these	RDBMSs:

MariaDB
MySQL
Oracle
PostgreSQL

Another	use	of	data	replication	is	as	a	means	to	help	data	scale	better	when	working	with	large
datasets	or	a	large	number	of	users.	A	Read	Replica	has	a	copy	of	the	data	in	the	main	database,	but
you	can’t	change	it.	Applications	connect	to	the	Read	Replica	version	of	the	data,	rather	than	the	main

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html

copy,	to	reduce	the	load	on	the	main	database	when	performing	read-only	tasks	such	as	queries	and
data	analysis.	This	feature	is	available	only	to	MySQL,	MariaDB,	and	PostgreSQL	RDBMS	users.	The
main	advantage	is	that	your	application	gains	a	considerable	scaling	feature.	The	main	disadvantage	is
that	Read	Replica	updates	occur	asynchronously,	which	means	that	the	read-only	data	may	contain	old
information	at	times.	You	can	read	more	about	this	feature	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html.

Cloning	your	database
Replication	is	data-based	copying	of	data.	You	ask	AWS	to	create	a	copy	of	your	data,	but	not
necessarily	the	entire	database.	Cloning	focuses	on	copying	the	entire	database,	including	the	data.
AWS	supports	cloning	by	using	database	snapshots,	a	sort	of	picture	of	the	database	at	a	specific
instant	in	time.	Database	snapshots	get	used	in	multiple	scenarios:

Backup:	Restoring	a	snapshot	helps	a	failed	RDS	instance	recover	to	a	known	state.
Testing:	Placing	a	snapshot	on	a	test	system	provides	real-world	data	that	a	developer	or	other
party	uses	to	test	applications	or	processes.
Cloning:	Copying	a	snapshot	from	one	RDS	instance	to	another	creates	a	clone	of	the	source	RDS
instance.

Creating	the	snapshot	means	telling	AWS	where	to	copy	the	database	and	providing	credentials	for
encrypted	databases.	You	can	create	a	database	snapshot	in	a	number	of	ways:

Manually	by	using	the	RDS	Management	Console
Automatically	by	scheduling	the	snapshot	using	the	RDS	Management	Console
Programmatically	by	using	the	RDS	API

When	you	use	automation	to	create	the	snapshot,	AWS	automatically	deletes	the	snapshot	at	the	end	of
its	retention	period,	when	you	disable	automated	database	snapshots	for	an	RDS	instance,	or	when	you
delete	an	RDS	instance.	You	can	keep	manually	generated	database	snapshots	for	as	long	as	needed.

	Copying	a	database	snapshot	from	one	region	to	another	incurs	data	transfer	charges	in
addition	to	any	charges	that	you	incur	creating	the	snapshot	or	using	other	service	features.	You
should	consider	the	cost	of	performing	this	task	in	advance	because	the	charges	can	quickly	mount
for	a	large	database	(see	http://aws.amazon.com/rds/pricing/	for	pricing	details).	In
addition,	Amazon	places	limitations	on	copying	database	snapshots	from	certain	sources.	For
example,	you	can’t	copy	a	database	snapshot	to	or	from	the	AWS	GovCloud	(US)	region	(see
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

for	details).

Managing	RDS
Developers,	DevOps,	Administrators,	and	DBAs	all	work	with	DBMS	in	different	ways	to	perform

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
http://aws.amazon.com/rds/pricing/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html

different	tasks.	Developers	often	view	management	as	a	series	of	setup,	testing,	and	tweaking
operations	because	these	kinds	of	management	follow	the	application	development	cycle.
Consequently,	developers	tend	to	work	with	management	tools	differently	from	everyone	else.	When
working	with	RDS,	you	have	three	essential	methods	for	performing	management	tasks:

Management	console:	Perform	the	initial	DBMS	setup	and	the	complex	tweaks	needed	to	ensure
maximum	security,	reliability,	and	speed.
CLI:	Script	repetitive	short	tasks	that	don’t	rely	on	significant	amounts	of	output	and	perform	one
off	operations,	such	as	status	checks.
Custom	code:	Define	complex	repetitive	tasks	that	require	considerable	effort	when	using	the
console	and	obtain	unique	output	presentations	based	on	business	logic.

You	may	find	that	you	use	each	of	these	methods	for	other	purposes	or	that	there	is	some	overlap
between	them.	The	point	is	that	each	method	is	important	and	has	a	particular	place	in	your	toolbox.
With	this	in	mind,	the	following	sections	show	how	to	perform	various	RDS	management	tasks	using
each	of	the	common	methods.

Accessing	the	RDS	Management	Console
As	with	every	other	part	of	AWS,	you	can	use	a	special	management	console	to	work	with	RDS.	The
RDS	Management	Console	enables	you	to	choose	an	RDBMS,	create	a	database,	add	tables	and	other
objects	to	the	database,	and	make	the	database	accessible	to	an	application.	You	also	use	the	RDS
Management	Console	to	perform	administrative	tasks,	such	as	to	configure	security.	Use	the	following
steps	to	access	the	RDS	Management	Console:

1.	 Sign	into	AWS	by	using	your	user	account.
2.	 Navigate	to	the	RDS	Management	Console	at	https://console.aws.amazon.com/rds.

You	see	a	Welcome	page	that	contains	interesting	information	about	RDS	and	what	it	can	do	for
you,	as	shown	in	Figure	11-1.	However,	you	don’t	see	the	actual	console	at	this	point.	Notice	the
Navigation	pane	at	the	left.	You	can	click	the	left-pointing	arrow	to	hide	it	as	needed.	Many	of	the
RDS	Dashboard	options	are	the	same	as	those	used	by	EC2,	which	is	no	surprise,	given	that	you
use	EC2	to	support	the	database.

3.	 Click	Get	Started	Now.
You	see	the	Select	Engine	page,	shown	in	Figure	11-2.	Notice	that	you	can	select	a	major	vendor
and	then	a	specific	version	of	that	vendor’s	product.	For	example,	the	screenshot	shows	three
versions	of	SQL	Server	(others	are	available).
The	examples	in	this	chapter	rely	on	MySQL	because	you	can	also	download	a	free	local	copy
from	https://www.mysql.com/downloads/.	The	MySQL	Community	Edition	is	free,	and	you
can	obtain	trial	versions	of	the	other	editions.	Most	vendors	do	provide	a	free	version	of	their
product	for	testing	and	learning	purposes.	In	addition,	MySQL	works	on	most	of	the	platforms	that
readers	of	this	book	will	use.

	Select	Free	Tier	Eligible	Only	if	you	want	to	select	only	a	free-tier	database.	You	still	see

https://console.aws.amazon.com/rds
https://www.mysql.com/downloads/

the	other	options,	but	the	Select	button	is	grayed	out	so	that	you	won’t	inadvertently	select	a	paid
option.	Using	free	options	can	save	you	money	on	software,	but	developers	must	also	choose	an
option	that	works	with	the	database	the	organization	uses.	Otherwise,	you	encounter	potential
problems	when	moving	your	application	from	testing	to	production.

4.	 Click	Select	next	to	the	MySQL	Community	Edition	entry.
You	see	the	Specify	DB	Details	page,	shown	in	Figure	11-3.	Notice	that	the	Navigation	page
specifies	that	this	DBMS	is	free-tier	eligible.	The	right	pane	contains	all	the	details	about	the
DBMS	instance.

5.	 Select	the	Only	Show	Options	that	are	Eligible	for	RDS	Free	Tier.
Choosing	this	option	helps	ensure	that	you	don’t	choose	features	that	will	require	payment	later.

6.	 Choose	MySQL	5.6.27	in	the	DB	Engine	Version	field.

	The	DB	Engine	Version	field	doesn’t	automatically	select	the	most	current	version.	It
appears	to	select	the	most	commonly	used	version	instead.	In	addition,	the	drop-down	list	doesn’t
display	the	versions	in	order.	Make	sure	that	you	look	through	the	entire	list	for	the	version	you
need	before	assuming	that	AWS	might	not	make	it	available.

7.	 Choose	db.t2.micro	in	the	DB	Instance	Class	field.
To	retain	free-tier	compatibility,	you	must	choose	this	particular	class.	It	pays	to	review	the	free-
tier	requirements	found	at	https://aws.amazon.com/rds/free/.	This	informational	page
provides	details	about	free-tier	usage,	such	as	the	instance	type,	the	kinds	of	database	product	you
can	choose,	memory	requirements,	and	so	on.

	Because	the	free-tier	requirements	can	change	at	any	time,	you	must	review	the	free-tier
materials	before	making	choices	about	the	database	you	want	to	work	with.	You	may	need	to
modify	the	selections	used	in	this	chapter	to	ensure	that	you	maintain	free-tier	support	and	don’t
incur	any	expenses.

8.	 Ensure	the	Multi-AZ	Deployment	field	displays	a	value	of	No.
When	using	the	free-tier	options,	AWS	greys	this	field	out	and	automatically	selects	No	for	you.	A
Multi-Availability	Zone	(Multi-AZ)	configuration	makes	your	setup	more	reliable	and	faster	by
creating	duplicate	databases	in	multiple	zones.	The	“Defining	data	replication”	section,	earlier	in
this	chapter,	describes	the	concept	in	more	detail.	The	discussion	at
https://aws.amazon.com/rds/details/multi-az/	provides	additional	details	specifically
regarding	Multi-AZ.

9.	 Choose	General	Purpose	(SSD)	in	the	Storage	Type	field	and	type	20	in	the	Allocated
Storage	field.
When	working	with	MySQL	Community	Edition,	you	must	allocate	at	least	5GB	of	storage.
However,	the	free	tier	allows	you	to	allocate	up	to	20GB,	which	is	the	maximum	amount	that	the
MySQL	Community	Edition	can	use.	To	get	the	maximum	performance	from	your	experimental

https://aws.amazon.com/rds/free/
https://aws.amazon.com/rds/details/multi-az/

setup,	you	want	to	allocate	as	much	memory	as	you	can.

	Depending	on	the	DBMS	you	choose,	the	wizard	may	warn	you	that	choosing	less	than
100GB	of	storage	can	cause	your	application	to	run	slowly	when	working	with	high	throughput
loads.	This	warning	isn’t	a	concern	when	creating	an	experimental	setup,	such	as	the	one	defined
for	this	chapter.	However,	you	do	need	to	keep	the	storage	recommendations	in	mind	when	creating
a	production	setup.

10.	 Type	MyDatabase	in	the	DB	Instance	Identifier	field.
The	instance	identifier	provides	the	means	for	uniquely	identifying	the	database	for	access
purposes.	Usually	you	choose	a	name	that	is	descriptive	of	the	database’s	purpose	and	is	easy	for
everyone	to	remember.

11.	 Type	a	username	in	the	Master	Username	field.
The	master	user	is	the	administrator	who	manages	the	database	and	will	receive	full	access	to	it.	A
specific	person	should	have	the	responsibility,	rather	than	assign	it	to	a	group	(where
responsibility	for	issues	can	shift	between	people).	When	working	as	a	sole	developer	on	a
project,	you	should	type	your	username	in	this	field	to	keep	things	easy.	When	working	in	a	group
setting,	make	sure	you	get	the	correct	username	and	password	from	the	group	leader	or
administrator.

12.	 Type	a	password	in	the	Master	Password	field,	repeat	it	in	the	Confirm	Password	field,	and
then	click	Next	Step.
You	see	the	Configure	Advanced	Settings	page,	shown	in	Figure	11-4.	This	page	lets	you	choose
the	VPC	security	group	used	to	identify	incoming	requests	(before	they	arrive	at	the	DBMS);	the
authentication	directory	used	to	authenticate	database	users	who	rely	on	Windows	Authentication;
the	networking	options	used	to	access	the	DBMS	(such	as	the	port	number);	the	backup	plan;	the
monitoring	plan;	and	the	maintenance	plan.	You	do	need	to	set	the	VPC	security	group	to	ensure
that	you	can	access	the	database.	However,	the	remaining	defaults	will	work	for	the	examples	in
this	chapter.

13.	 Choose	the	Default-Launch	security	group	created	as	part	of	defining	the	EC2	setup.
Depending	on	the	DBMS	you	choose,	you	may	find	other	database	options	that	you	can	set.	For
example,	MySQL	lets	you	provide	the	name	of	an	initial	database.	It	pays	to	go	through	the	settings
carefully	to	ensure	that	you	make	maximum	use	of	wizard	functionality.

14.	 Type	FirstDatabase	in	the	Database	Name	field	and	then	click	Launch	DB	Instance.
AWS	starts	the	instance	creation	process.

15.	 Click	View	Your	DB	Instances.
You	see	the	RDS	Management	Console,	as	shown	in	Figure	11-5.

FIGURE	11-1:	Getting	started	with	the	Amazon	Relational	Database	Service	(RDS).

FIGURE	11-2:	Choose	a	vendor	and	then	a	specific	vendor	product.

FIGURE	11-3:	Specify	the	details	used	to	create	the	database	instance.

FIGURE	11-4:	Define	the	connectivity,	backup,	monitoring,	and	maintenance	details.

FIGURE	11-5:	Creating	your	first	database	provides	access	to	the	RDS	Management	Console.

	The	database	creation	process	can	take	several	minutes	to	complete.	The	Status	field	(refer	to
Figure	11-6)	tells	you	the	status	of	the	database.	As	long	as	the	Status	field	continues	to	say
Creating,	you	must	wait	to	perform	any	additional	tasks.	However,	you	can	download	and	install
any	products	required	to	access	the	database	(if	you	haven’t	done	so	already).

FIGURE	11-6:	Use	the	CLI	to	obtain	useful	information	about	the	database	engine	or	to	manage	it.

Using	the	CLI	alternative
This	section	of	the	chapter	shows	how	to	interact	with	RDS	using	the	CLI.	It	assumes	that	you	created
a	MySQL	database	by	using	the	steps	in	the	previous	section	and	that	the	Status	field	for	that	database
currently	reads	Available	(and	not	Creating).	If	not,	it’s	time	for	a	coffee	break.

Using	the	CLI	to	access	RDS	is	much	like	using	the	CLI	for	other	tasks.	You	begin	each	command	with
aws	rds.	The	command	reference	appears	at
http://docs.amazonaws.cn/cli/latest/reference/rds/index.html.	Some	of	the	information
you	can	obtain	using	this	approach	is	quite	interesting.	For	example,	you	might	wonder	about	potential
updates	for	the	current	version	of	the	database	engine	you’re	using.	To	test	what	information	you	get
with	the	example,	type	aws	rds	describe-db-engine-versions	--engine	mysql	--engine-version	5.6.27
and	press	Enter.	You	see	the	output	shown	in	Figure	11-6.

The	output	shows	that	you	have	a	number	of	potential	upgrades	available,	but	none	of	them	is	an
automatic	upgrade	—	you’d	need	to	apply	each	specifically.	Three	of	these	upgrades	represent	a	major

http://docs.amazonaws.cn/cli/latest/reference/rds/index.html

version	upgrade,	which	means	heavy	research	on	the	part	of	the	developer	before	making	the	upgrade.
Yes,	you	need	to	research	every	upgrade,	but	minor	upgrades	tend	to	provide	less	in	the	way	of	new
features.

A	few	of	the	CLI	commands	are	unclear.	For	example,	when	you	want	to	discover	more	about	a
particular	instance,	you	use	the	describe-db-instances	command.	However,	if	you	have	a	number
of	instances	defined,	you	need	to	further	identify	specifically	which	attribute	by	using	the	--filters
argument	as	described	at	http://docs.amazonaws.cn/cli/latest/reference/rds/describe-
db-instances.html.	A	filter	can	rely	on	the	DBInstanceIdentifier	or	DBClusterIdentifier
values.	To	make	this	command	work,	you	must	define	which	kind	of	identifier	you’re	supplying	and	the
one	or	more	values	associated	with	that	identifier.	In	the	case	of	the	example,	you	type	aws	rds
describe-db-instances	--filters	Name=db-instance-id,Values=mydatabase	and	press	Enter	to	obtain
information	about	the	database	created	for	this	chapter.	Note	how	the	information	appears	in	the
command.	The	aws	utility	can	be	quite	picky	about	the	format	in	this	case.	The	output	appears	in	Figure
11-7.

FIGURE	11-7:	Some	commands	require	some	special	formatting	and	input.

Performing	management	tasks	programmatically
Working	with	RDS	programmatically	works	better	when	you	interact	with	it	at	the	command	line	first.
Most	of	the	concepts	are	the	same	between	the	two	environments,	but	most	developers	find	that
working	with	the	CLI	is	faster.

	After	you	do	move	from	the	CLI	to	a	programming	environment,	make	certain	that	you	use	the
correct	documentation.	For	example,	when	working	with	Python,	make	sure	to	use	the	boto3
documentation	at
http://boto3.readthedocs.io/en/latest/reference/services/rds.html,	not	the	boto
documentation.	In	this	case,	the	two	environments	are	completely	incompatible,	and	code	written
for	one	is	guaranteed	not	to	run	in	the	other.	(You	can	access	the	example	code	for	this	chapter	in
the	AWS4D4D;	11;	RDS.ipynb	file	in	the	downloadable	source,	as	explained	in	the
Introduction.)	To	start,	you	must	create	an	RDS	client:

http://docs.amazonaws.cn/cli/latest/reference/rds/describe-db-instances.html
http://boto3.readthedocs.io/en/latest/reference/services/rds.html

import	boto3

client	=	boto3.client('rds')

To	determine	the	update	versions	for	the	current	product	version,	you	rely	on	the
describe_db_engine_versions()	function.	The	input	arguments	are	the	same	as	at	the	command
line,	but	to	obtain	the	information,	you	drill	down	into	the	output,	as	shown	here:

for	target	in	client.describe_db_engine_versions(

				Engine='mysql',	EngineVersion='5.6.27')	\

				['DBEngineVersions'][0]['ValidUpgradeTarget']:

								print(target['EngineVersion'])

The	output	for	this	example	is	the	same	as	when	working	with	the	CLI.	Of	course,	the	Python	code
removes	all	extraneous	information:

5.6.29

5.6.34

5.6.35

5.7.11

5.7.16

5.7.17

Using	Python	lets	you	filter	the	output	in	a	number	of	ways.	For	example,	you	might	find	just	those
updates	that	don’t	require	a	major	upgrade.

Getting	the	instance	information	is	also	similar	to	working	with	the	CLI.	Here	is	the	Python	code	used
for	this	task:

client.describe_db_instances(

				DBInstanceIdentifier='mydatabase')['DBInstances'][0]

This	is	the	simplified	version,	but	it	obtains	only	the	information	for	a	single	instance,	as	shown	here
(some	information	isn’t	shown	to	save	book	space):

{'AllocatedStorage':	20,

	'AutoMinorVersionUpgrade':	True,

	'AvailabilityZone':	'us-west-2c',

	'BackupRetentionPeriod':	7,

	'CACertificateIdentifier':	'rds-ca-2015',

	'CopyTagsToSnapshot':	False,

	

	…

	

	'PendingModifiedValues':	{},

	'PreferredBackupWindow':	'11:39-12:09',

	'PreferredMaintenanceWindow':	'sun:07:12-sun:07:42',

	'PubliclyAccessible':	True,

	'ReadReplicaDBInstanceIdentifiers':	[],

	'StorageEncrypted':	False,

	'StorageType':	'gp2',

	'VpcSecurityGroups':	[{'Status':	'active',

			'VpcSecurityGroupId':	'sg-c511c2be'}]}

You	can	also	use	a	version	of	the	call	that’s	closer	to	what	you	used	with	the	CLI:
client.describe_db_instances(

				Filters=[{'Name':'db-instance-id',

														'Values':['mydatabase']}])['DBInstances'][0]

The	output	is	the	same	either	way,	but	the	first	version	is	shorter	when	you	want	just	one	instance.	You
can	provide	multiple	instance	identifier	values,	for	example,	when	working	with	the	second	version.

Creating	a	Database	Server
Creating	a	cloud-based	database	server	works	much	like	creating	a	local	server	except	that	you’re

performing	all	the	tasks	remotely	on	someone	else’s	system.	The	change	in	venue	means	that	you	may
find	that	some	processes	take	longer	to	complete,	that	you	may	not	have	quite	the	same	flexibility	as
you	have	when	working	locally,	or	that	some	features	work	differently.	However,	the	overall
workflow	is	the	same.	The	following	sections	demonstrate	how	to	work	with	a	MySQL	Server	setup,
but	the	techniques	used	with	other	RDBMSs	are	similar.

Installing	a	database	access	product
To	use	your	new	database,	you	need	an	application	that	can	access	it.	For	example,	when	you	want	to
work	with	MySQL,	you	use	the	MySQL	Workbench
(http://dev.mysql.com/downloads/workbench/).	Likewise,	when	working	with	SQL	Server
Express,	you	use	the	SQL	Server	Management	Studio
(https://msdn.microsoft.com/library/mt238290.aspx).	No	matter	which	DBMS	you	choose,
you	use	an	application	outside	of	the	RDS	Management	Console	to	manage	it.	You	use	the	RDS
Management	Console	only	to	control	how	the	DBMS	works	with	AWS.	Because	this	chapter	relies	on
MySQL	as	the	DBMS,	you	need	to	download	and	install	a	copy	of	MySQL	Workbench	before
proceeding	with	any	of	the	other	activities.

	This	book	uses	the	64-bit	MySQL	Workbench	6.3.9	on	Windows	7.	If	you	use	some	other
version,	the	screenshots	are	likely	to	differ	substantially,	and	some	procedures	might	not	work	as
expected.	However,	the	basic	principles	are	the	same	across	all	versions	(and	likely	across	most
RDBMS	products).	You	should	still	be	able	to	perform	the	required	setups,	but	be	aware	that	you
obtain	the	best	results	using	the	6.3.9	version.

Accessing	the	instance
The	database	instance	that	you	created	earlier	will	eventually	become	available.	This	means	that	you
can	interact	with	it.	However,	to	interact	with	the	database	instance,	you	need	to	know	its	endpoint,
which	is	essentially	an	address	where	applications	can	find	it.	When	you	select	an	instance	in	the	RDS
Management	Console,	a	detailed	view	of	that	instance	becomes	visible	and	you	can	see	the	endpoint
information,	as	shown	in	Figure	11-8.

http://dev.mysql.com/downloads/workbench/
https://msdn.microsoft.com/library/mt238290.aspx

FIGURE	11-8:	Find	the	instance	endpoint	so	that	you	can	access	it	from	your	management	application.

	In	this	case,	the	endpoint	is	mydatabase.cihzb27l5reh.us-west-
2.rds.amazonaws.com:3306,	which	includes	the	instance	name,	a	randomized	set	of	letters	and
numbers,	the	instance	location,	and	the	port	used	to	access	the	instance.	Every	endpoint	is	unique.
If	the	endpoints	weren’t	unique,	you’d	experience	confusion	trying	to	access	them.	When	working
through	the	examples	in	this	chapter,	you	must	use	the	endpoint	for	your	database,	not	the	endpoint
for	the	book’s	example	database,	which	appears	only	as	an	example.

When	setting	up	a	new	connection	in	MySQL	Workbench	like	the	one	shown	in	Figure	11-9,	you	need
to	supply	the	entire	endpoint,	except	for	the	port,	as	the	hostname.	In	this	case,	that	means	supplying
mydatabase.cempzgtjl38f.us-west-2.rds.amazonaws.com	as	the	hostname.	You	must	also
supply	the	port,	which	is	3306.	Even	though	Figure	11-9	doesn’t	show	it,	you	must	also	provide	your
username	and	password	(click	Store	in	Vault)	to	access	the	instance.

FIGURE	11-9:	Create	a	connection	using	the	instance	endpoint	information	from	the	RDS	Management	Console.

	As	shown	in	Figure	11-9,	the	MySQL	Workbench	provides	a	Test	Connection	button	that	you
can	use	to	determine	whether	the	connection	information	will	work.	Most	database	management
products	provide	such	a	button,	and	testing	your	connection	before	you	move	to	the	next	step	is	a
great	idea.	Otherwise,	you	can’t	be	sure	whether	an	error	occurs	because	of	a	problem	with	the
database	or	the	connection	to	the	database.

Adding	tables
You	work	with	your	AWS	database	as	you	would	any	other	database	that	you	can	access	using	the
management	tool	of	your	choice.	Everything	works	the	same;	you	simply	perform	tasks	in	the	cloud,
rather	than	on	your	local	network	or	on	your	machine.	Figure	11-10	shows	a	typical	example	using
MySQL	Workbench.	Notice	that	FirstDatabase	appears	in	the	Navigator	pane,	just	as	you’d	expect,
after	making	the	connection	to	the	RDS	database.

FIGURE	11-10:	Putting	the	database	in	the	cloud	doesn’t	change	how	your	tools	work.

Right-clicking	the	Tables	entry	produces	a	context	menu	in	which	you	can	choose	Create	Table.	The
creation	process	works	as	it	normally	does.	The	only	difference	you	might	note	is	that	some	tasks	will
require	more	time	to	complete	because	of	the	latency	of	the	connection.	Remember	that	you’re
accessing	the	database	through	a	number	of	additional	layers	and	that	your	connection	speed	also	acts
as	a	determining	factor.

Working	with	other	features
The	tools	and	techniques	you	use	depend	on	your	role	and	the	environment	(test	or	production)	that	you
find	yourself	using.	You	must	make	a	significant	separation	between	the	database	instance	and	the
database	itself:

Administrator:	Addresses	the	needs	of	the	production	database	instance	using	the	RDS
Management	Console,	such	as	by	ensuring	that	the	database	is	backed	up	or	resetting	the	instance
when	it	crashes.
Database	Administrator	(DBA):	Interacts	with	the	production	database	structure	by	using	a
completely	different	tool,	such	as	MySQL	Workbench	(as	demonstrated	in	this	chapter).
Developer:	Uses	a	combination	of	the	tools	and	techniques	relied	upon	by	administrators	and
DBAs	to	set	up	and	configure	test	databases,	but	developers	may	find	themselves	locked	out	of
production	databases.	The	test	database	must	match	the	production	database,	so	the	developer	must
collaborate	with	both	administrators	and	DBAs.

Because	of	the	nature	of	cloud-based	databases,	you	must	consider	how	various	administrators	access
tools	and	who	can	access	them.	The	following	sections	detail	the	use	of	various	RDS	Management
Console	tools.

Monitoring	the	database	instance
When	working	with	RDS,	a	developer	works	with	the	database	at	two	levels.	The	first	level	is
monitoring.	The	detailed	view	always	provides	you	with	some	metrics	about	the	database.	You	see	a

log	of	alarms	and	recent	events.	In	addition,	you	see	the	current	CPU,	memory,	and	storage	use.
However,	these	indicators	are	in	real	time,	and	you	often	need	historical	data	to	make	a	determination
about	a	particular	course	of	action.

To	perform	monitoring	tasks,	you	select	the	database	and	then	choose	one	of	the	monitoring	options
from	the	Show	Monitoring	menu	of	the	RDS	Management	Console.	For	example,	Figure	11-11	shows
the	multigraph	view	of	the	server	data	(choose	Show	Monitoring     Show	Multi-Graph	View).	In	this
case,	the	graph	shows	the	addition	of	a	couple	of	connects	to	the	database	and	the	effect	of	adding	a
table	and	performing	some	other	tasks.	You’d	need	to	look	carefully	at	the	Free	Storage	Space	graph	to
detect	any	activity	at	all.	Fortunately,	you	can	click	any	of	the	graphs	to	expand	it	and	get	a	better	look.
When	you	finish	performing	a	monitoring	task,	click	Hide	Monitoring	to	see	the	detailed	view	again.

FIGURE	11-11:	Monitoring	provides	much-needed	historical	data.

Rebooting	after	a	crash
The	Instance	Actions	menu	lets	you	interact	with	the	database	instance	at	an	administrator	level.	For
example,	when	an	instance	does	crash,	you	can	restore	it	by	choosing	Instance	Actions     Reboot.

Creating	and	deleting	a	snapshot
You	may	choose	to	create	a	read-only	static	view	of	the	database	(a	snapshot)	for	archival	reasons.
For	example,	a	snapshot	provides	a	good	way	to	restore	a	test	database	after	you’ve	played	with	it	for
a	while.	The	capability	to	repeat	actions	using	the	same	data	is	essential	for	development,	so	being
able	to	quickly	restore	a	database	to	a	known	configuration	is	important.

In	this	case,	you	choose	Instance	Actions     Take	Snapshot.	The	RDS	Management	Console	displays
the	Take	DB	Snapshot	page,	shown	in	Figure	11-12.	The	note	about	the	InnoDB	storage	engine	doesn’t
apply	to	the	MySQL	Community	Edition	because	RDS	supports	only	the	InnoDB	storage	engine	in	this
case.	To	create	the	snapshot,	type	a	name	(the	example	uses	MySnapshot)	in	the	Snapshot	Name	field
and	then	click	Take	Snapshot.	After	you	create	the	snapshot,	it	appears	in	the	RDS	Management
Console	as	another	snapshot	(choose	Snapshots	in	the	Navigation	pane)	that	someone	can	access	as
needed.

FIGURE	11-12:	Create	a	snapshot	to	use	as	a	read-only	source	of	information.

	Snapshots	don’t	become	usable	until	the	Status	field	shows	Available.	Consequently,	you	can’t
create	a	snapshot	and	immediately	test	your	code	because	the	snapshot	isn’t	available	at	that
point.	Wait	until	the	Status	field	shows	Available	before	testing	your	code.

Of	course,	you	don’t	want	to	keep	snapshots	around	that	you’re	not	using.	Otherwise,	you	accumulate
charges	for	objects	you	don’t	need.	To	remove	a	snapshot,	select	its	entry	and	click	Delete	Snapshot.

Restoring	a	snapshot
The	main	reason	to	have	a	snapshot	is	for	use	as	a	backup.	To	restore	a	snapshot,	select	its	entry	in	the
snapshot	list	and	then	choose	Snapshot	Actions     Restore	Snapshot.	You	see	the	Restore	DB	Instance
page,	shown	in	Figure	11-13.	This	page	works	much	the	same	as	the	details	page	that	you	interacted
when	creating	the	initial	database.	However,	the	new	database	instance	will	contain	everything	found
in	the	snapshot.	It	will	have	its	own	endpoint	as	well.	Of	course,	you	want	to	give	the	database	a
different	instance	name	than	the	current	database	until	you	verify	the	snapshot’s	content.

FIGURE	11-13:	Specify	the	details	of	the	restored	snapshot	to	a	database	instance.

Verification	is	an	important	part	of	the	process	of	working	with	any	database	in	any	situation,	but
especially	so	in	the	cloud.	After	you	verify	that	the	restored	snapshot	database	instance	contains	the
data	you	need,	you	can	exchange	it	with	the	original	database	that	needs	repair	by	following	these
steps:

1.	 Select	the	original	database.
You	see	the	details	for	that	database.

2.	 Choose	Instance	Actions     Modify.
You	see	the	Modify	DB	Instance	page,	shown	in	Figure	11-14.	This	page	contains	all	the	settings
you	used	to	create	the	database	instance	initially.	You	can	modify	any	of	the	settings	as	needed.

3.	 Change	the	DB	Instance	Identifier	field	content	to	something	new.
4.	 Select	Apply	Immediately	and	then	click	Continue.

If	you	don’t	apply	the	change	immediately,	it	won’t	take	place	until	the	next	maintenance	cycle.	You
see	a	summary	page	that	shows	the	modifications	that	you	want	to	apply.

5.	 Click	Modify	DB	Instance.
AWS	applies	the	changes	you	requested.

	You	must	wait	until	AWS	reboots	the	instance	(you	see	Rebooting	in	the	Status	field)
before	the	changes	become	permanent.	When	the	Status	field	reads	Available,	you	can	move	on	to
Step	6.

6.	 Perform	Steps	1	through	5	for	the	restored	snapshot	database	instance,	except	give	this
instance	the	name	of	the	original	database.
You	have	now	swapped	the	two	databases	and	are	using	the	restored	snapshot	database	instance	as

your	current	database	instance	for	applications.

FIGURE	11-14:	Change	database	instance	settings	as	needed	to	accomplish	specific	tasks.

Performing	other	modifications
The	Modify	DB	Instance	page,	shown	in	Figure	11-14	(available	through	the	Instance	Actions     
Modify	command),	also	gives	you	access	to	a	wealth	of	other	database	instance	settings.	For	example,
you	can	choose	when	backups	occur	and	the	level	of	monitoring	provided.	You	can	also	change	the
database	instance	security	settings.	Anything	you	defined	as	part	of	the	original	creation	process	is
available	for	modification	in	the	Modify	DB	Instance	page.

Adding	Support	to	Applications
After	you	have	a	database	server	created	and	configured,	you	can	use	an	application	to	access	it.	The
data	doesn’t	serve	any	purpose	until	you	provide	access	to	it.	The	purpose	of	the	application	in	this
case	is	to	provide	Create	Read	Update	and	Delete	(CRUD)	support	for	the	data.	Users	are	interested
in	data	and	what	it	represents;	the	application	used	to	perform	the	task	is	secondary.	In	fact,	common
practice	today	is	to	provide	multiple	applications	to	perform	database	tasks	because	user	needs	differ
so	widely	as	a	result	of	varying	usage	environments,	devices,	and	personal	preferences.	The	sources
of	these	database	applications	can	also	vary.	A	database	vendor	might	provide	a	generic	application,
corporate	developers	might	supply	something	specific,	and	a	third	party	might	offer	a	feature-rich
version	of	the	application.	The	following	sections	discuss	CRUD	as	it	relates	to	working	with	AWS
and	a	simple	application	by	using	the	example	database	created	earlier	in	the	chapter.

DEFINING	THE	HYPE	BEHIND	CLOUD-BASED	APPLICATION
PERFORMANCE

There	are	no	quick	fixes	to	most	problems.	I’d	go	so	far	as	to	say	there	are	no	quick	fixes	to	any	problem,	but	someone	will
almost	certainly	e-mail	me	an	exception	to	the	rule.	However,	when	it	comes	to	performance	issues,	you	likely	can’t	count	on

a	cloud-based	approach	to	fix	anything,	especially	performance,	which	consists	of	reliable	operation	in	a	secure	manner	and
at	the	highest	attainable	speed.	To	fix	performance	issues,	you	must	start	with	a	great	design,	and	the	cloud	simply	can’t	fix
design	problems.

You	might	think	that	throwing	more	memory	and	processors	at	an	application	will	make	it	perform	faster.	Unfortunately,	as
you	increase	memory	and	the	number	of	processors,	you	also	increase	the	amount	of	communication	that	occurs	within	the
application.	A	poorly	designed	application	could	benefit	a	little	from	a	faster	environment,	but	not	as	much	as	you	might	think.

Adding	auto-scaling	and	auto-provisioning	services	to	your	application	could	make	it	scale	better,	but	these	services	won’t	fix
inherent	problems	in	the	design.	You’ll	get	an	application	that	provides	a	level	performance	curve,	but	not	one	that	works
faster.	In	addition,	you	spend	a	great	deal	more	money	to	obtain	the	flatness	of	that	curve.

Security	is	also	an	issue	in	the	cloud.	Anytime	you	let	data	out	of	your	grasp	(as	you	do	with	the	cloud),	you	now	depend	on	a
third	party	to	control	security.	In	addition,	cloud-based	solutions	won’t	fix	the	most	prevalent	security	issue	that	application
developers	face:	users.	Letting	your	data	reside	in	the	cloud	means	that	users	will	access	it	in	all	sorts	of	nonsecure	ways,	in
all	sorts	of	nonsecure	environments,	and	potentially	on	all	sorts	of	nonsecure	devices.	If	anything,	security	is	worse	in	the
cloud	than	it	could	ever	be	on	your	local	network.

So	speed	is	probably	going	to	remain	about	even	and	security	is	worse	in	the	cloud.	The	only	good	news	you	have	is	that
reliability	is	likely	better.	It’s	not	as	perfect,	as	the	cloud	vendor	would	have	you	believe,	but	it’s	better	than	having	the
application	run	in	a	single	location,	creating	a	single	point	of	failure.	The	point	is	that	you	need	a	great	application	design
before	you	move	to	the	cloud,	and	you	should	have	realistic	expectations	of	what	will	happen	when	you	move	there.

Considering	the	access	requirements
When	working	with	cloud	data,	accessing	the	data	requires	an	endpoint,	just	as	it	does	for	your	local
network	or	drive.	As	shown	in	the	“Accessing	the	instance”	section,	earlier	in	this	chapter,	nothing
really	changes	from	a	procedural	perspective,	except	that	you	must	now	provide	a	different	endpoint
than	normal.	From	a	developer	perspective,	the	endpoint	that	RDS	provides	for	a	database	instance	is
nothing	more	than	a	URL,	which	means	that	you	can	use	the	same	techniques	that	you	use	for	any	online
data.	This	consideration	also	applies	to	any	administrator	tools	used	for	private	data.	Administrators
must	consider	the	following	issues	as	part	of	the	application	migration:

Verify	that	a	connection	works	before	attempting	to	use	it	to	perform	tasks	on	the	data.
Assume	that	the	connection	will	go	down	at	some	point,	so	make	sure	to	verify	that	the	connection
is	still	present	before	each	task.
Assume	that	someone	will	hack	your	data,	no	matter	what	security	precautions	you	take,	because
the	data	is	now	available	in	a	public	venue	(so	have	a	recovery	plan	in	place).
Ensure	that	security	measures	work	as	anticipated	so	that	every	user	group	can	access	the	data
within	the	boundaries	set	by	company	policy.
Define	security	policies	for	working	with	data	in	a	public	venue	that	address	social	hacking	issues.
Consider	legal	and	privacy	requirements	before	moving	the	data.
Develop	a	plan	for	dealing	with	sensitive	data	that	inadvertently	makes	it	to	your	hosted	database
rather	than	staying	on	the	local	network	or	on	a	specific	machine.

These	precautions	are	in	addition	to	the	precautions	you	normally	take	when	connecting	an	application
to	a	database.	The	actual	coding	that	you	use	may	not	change	much	(except	for	the	addition	of	checks	to
address	online	access	requirements),	but	the	focus	of	how	the	application	makes	connections	and
performs	required	tasks	does	need	to	change.	Otherwise,	your	organization	might	make	front-page
news	after	getting	hacked	and	losing	a	lot	of	data	to	someone	in	another	country.

Configuring	the	MySQL	setup
To	work	with	MySQL	in	any	programming	language,	you	normally	need	to	install	required	library
support.	This	is	the	case	with	Python.	To	install	the	MySQL	support	required	for	the	example	in	this
section,	open	a	command	prompt,	type	pip	install	mysqlclient	--upgrade,	and	press	Enter.	You	see	the
usual	installation	messages.	The	book	examples	use	MySQL	Client	version	1.3.10.

	You	can	find	a	wealth	of	libraries	to	support	MySQL,	and	each	of	them	works	differently.	This
book	uses	a	particular	library	simply	to	make	the	examples	feasible.	Another	library	may	fulfill
your	needs	better.	In	many	cases,	experimentation	is	the	only	way	to	determine	whether	a
particular	library	meets	your	needs.

Interacting	with	the	database
Depending	on	how	you	interact	with	the	database,	you	might	find	a	need	to	create	infrastructure	as	part
of	an	application	process.	The	example	in	this	section	works	with	Python	and	MySQL.	The	goal	is	to
show	how	you	combine	RDS	with	DBMS	strategies	to	obtain	cloud	access	to	a	database	and	add	a
table	to	it.	Obviously,	the	example	won’t	show	you	how	to	code	your	C#	application	when	using	SQL
Server.	The	point	of	the	example	is	the	interaction,	not	necessarily	the	precise	technique	for	adding	a
table.	The	first	step	of	the	interaction	is	to	use	RDS	to	obtain	the	endpoint	that	MySQL	requires	to
access	the	database.	(You	can	access	the	example	code	for	this	chapter	in	the	AWS4D4D;	11;	Manage
Database.ipynb	file	in	the	downloadable	source,	as	explained	in	the	Introduction.)

import	boto3

client	=	boto3.client('rds')

address	=	client.describe_db_instances(

				DBInstanceIdentifier='mydatabase')['DBInstances']	\

				[0]['Endpoint']['Address']

port	=	client.describe_db_instances(

				DBInstanceIdentifier='mydatabase')['DBInstances']	\

				[0]['Endpoint']['Port']

print('Using	endpoint:	'	+	address	+	':'	+	str(port))

When	you	have	access	to	the	endpoint,	you	can	begin	using	the	MySQL	Client	library	to	work	with	the
database.	The	first	step	is	to	create	a	connection	to	the	database.	Note	that	you	must	supply	the
database	name,	your	username,	and	your	password	rather	than	use	any	details	that	appear	in	the
chapter.

import	_mysql

conn	=	_mysql.connect(host=address,	port=port,

																						db='FirstDatabase',

																						user='Name',	passwd='Password')

print(conn.get_host_info())

The	output	from	this	bit	of	code	should	show	the	URL	of	the	connection	and	define	how	the	code	made
the	connection.	Unless	you	have	a	strange	connection	to	AWS,	the	output	shows	that	you	connected
using	TCP/IP.

The	previous	steps	establish	a	connection	to	the	database.	You’ll	likely	use	these	initial	steps	in	all
your	applications	(or	ones	similar	to	them).	The	pattern	is	to	obtain	the	connection	to	RDS,	determine
the	connection	information,	and	then	use	that	connection	information	to	connect	to	the	actual	database
using	a	library	suitable	for	your	particular	DBMS.	At	this	point,	you	can	start	to	execute	commands
against	the	database.	How	you	execute	those	commands	depends	greatly	on	what	you	expect	to

achieve.	The	following	code	shows	a	simple	scenario	of	creating	a	table	after	ensuring	that	it	doesn’t
exist	already	and	adding	a	record	to	it.

conn.query('USE	FirstDatabase')

conn.query('DROP	TABLE	IF	EXISTS	MyTable')

	

conn.query(

				'CREATE	TABLE	MyTable	(Field1	int,	Field2	int)')

	

conn.query('INSERT	MyTable	VALUE	(0,	1)')

conn.query('SELECT	*	FROM	MyTable')

result	=	conn.store_result()

result.fetch_row()

The	last	steps	ensure	that	the	table,	MyTable,	actually	contains	the	new	record.	Note	that
conn.query()	doesn’t	return	a	result.	Instead,	you	must	store	the	result	in	a	variable	and	then	use	that
variable	to	obtain	the	desired	information.	In	this	case,	result.fetch_row()	shows	the	newly	added
record	data.

Configuring	Load	Balancing	and	Scaling
The	precise	levels	of	load	balancing	and	scaling	that	you	receive	with	a	particular	RDBMS	instance
depends	on	how	you	configure	the	instance	and	which	RDBMS	you	choose	to	use.	It	also	depends
partly	on	the	application	support	you	provide,	how	many	users	are	accessing	the	database	(and	from
where	they	access	it),	and	many	other	factors	too	numerous	to	discuss	in	a	single	chapter	of	a	book	(or
possibly	in	a	whole	shelf	of	books).	With	these	caveats	in	mind,	the	following	sections	discuss	load
balancing	and	scaling	issues	in	a	generic	way	that	works	with	all	the	RDBMSs	that	AWS	supports.
These	discussions	help	you	get	started	with	both	load	balancing	and	scaling,	but	you	may	need	to
augment	the	information	for	your	particular	RDBMS	to	obtain	a	full	solution	to	specific	management
needs.

Defining	the	purpose	of	load	balancing
When	your	application	gets	large	enough,	you	need	multiple	servers	to	handle	the	load.	Of	course,	you
don’t	want	to	configure	each	application	instance	to	use	a	specific	server;	rather,	you	want	to	send	the
request	to	a	general	location	and	have	it	go	to	the	server	with	the	least	load	at	any	given	time.	The
purpose	of	a	load-balancing	server	is	to

Act	as	a	centralized	request	handler
Monitor	the	servers	used	to	handle	requests
Route	responses	to	clients	from	the	various	servers
Determine	the	need	for	additional	servers	to	handle	increasing	loads

Not	all	load-balancing	scenarios	perform	all	these	activities,	but	most	of	them	do.	The	point	is	that	you
use	a	single	request	point	to	allow	access	to	multiple	servers	in	order	to	hide	the	fact	that	a	single
server	can’t	handle	the	load	for	the	number	of	requests	that	users	make.	Using	this	approach	enables
you	to	scale	your	application	across	multiple	servers	in	a	transparent	manner.

	When	you’re	working	with	AWS,	load	balancing	always	occurs	across	multiple	EC2
instances.	Even	though	Amazon	makes	a	point	of	telling	you	about	the	fault-tolerance	features
added	through	load	balancing,	the	main	focus	is	on	the	additional	processing	power	that	load
balancing	provides.	However,	if	an	EC2	instance	does	freeze	or	become	otherwise	unusable,	you
can	substitute	another	EC2	instance	without	any	problem.	The	application	user	will	never	see	the
difference.

Working	with	Elastic	Load	Balancing
When	you	first	configure	your	EC2	instances,	you	won’t	have	any	Elastic	Load	Balancers	configured
—	so	you	must	create	one.	The	Elastic	Load	Balancer	must	appear	in	the	same	region	as	the	EC2
instances	that	it	serves.	The	following	steps	help	you	create	an	Elastic	Load	Balancer:

1.	 Sign	into	AWS	using	your	administrator	account.
2.	 Navigate	to	the	EC2	Management	Console	at	https://console.aws.amazon.com/ec2.

You	see	the	EC2	Management	Console.
3.	 Verify	that	you	have	the	correct	region	selected	by	choosing	it	in	the	region	drop-down	list	at

the	top	of	the	EC2	Management	Console.
4.	 Select	Load	Balancing     Load	Balancers	in	the	Navigation	pane.

You	see	the	Load	Balancer	page,	shown	in	Figure	11-15.	Notice	that	the	message	specifies	that	you
don’t	have	any	load	balancers	configured	for	the	selected	region;	it	doesn’t	say	that	you	lack
access	to	any	load	balancers.

5.	 Click	Create	Load	Balancer.
The	wizard	asks	you	to	choose	a	load	balancer	type,	as	shown	in	Figure	11-16.	The	kind	of	load
balancer	you	choose	affects	all	sorts	of	things.	The	best	place	to	get	a	detailed	comparison	is	at
https://www.sumologic.com/aws/elb/aws-elastic-load-balancers-classic-vs-

application/.	However,	here	is	a	quick	overview	of	what	to	expect:

Classic:	The	classic	load	balancer	works	at	layer	4	of	the	OSI	model,	which	means	that	it
focuses	on	a	combination	of	IP	address	and	port	when	routing	calls.	The	advantages	of	this
load	balancer	are	that	it’s	easier	to	set	up	and	configure,	is	generally	less	expensive,	and
differentiates	between	calls	that	use	SSL	and	those	that	don’t.
Application:	The	application	load	balancer	works	at	layer	7	of	the	OSI	model,	which
means	that	it	focuses	application	content,	in	addition	to	IP	address	and	port.	You	can	use
rules	to	map	how	the	load	balancer	routes	information	requests.	The	advantages	of	this	load
balancer	are	significantly	greater	flexibility,	a	capability	to	prioritize	tasks,	and	the
capability	to	use	dynamic	port	mapping.

6.	 Choose	a	load	balancer	type	and	then	click	Continue.
The	example	uses	the	Classic	Load	Balancer	option	partly	due	to	the	EC2	setup	the	book	uses	and
partly	to	keep	the	costs	of	working	with	this	feature	minimal.
The	wizard	prompts	you	for	a	load	balancer	name,	as	shown	in	Figure	11-17.	In	addition,	notice

https://console.aws.amazon.com/ec2
https://www.sumologic.com/aws/elb/aws-elastic-load-balancers-classic-vs-application/

that	you	can	add	protocols	for	accessing	the	load	balancer.	You	use	the	same	protocols	that	your
EC2	instances	normally	require.	Remember	that	users	will	send	requests	to	the	load	balancer
instead	of	the	EC2	instance.	The	load	balancer	will	then	send	the	request	to	the	EC2	instance	best
able	to	handle	it.

	If	you	don’t	provide	any	secure	ports	for	your	load	balancer,	the	wizard	will	ask	you	to
reconsider	during	the	security	setup	step.	Whether	you	use	a	secure	port	depends	on	how	you’re
using	your	EC2	instances.	If	you	don’t	need	a	secure	connection	for	your	EC2	instances,	you	aren’t
likely	to	need	a	secure	connection	for	the	load	balancer.

7.	 Type	MyLoadBalancer	in	the	Load	Balancer	Name	field	and	then	click	Next:	Assign	Security
Groups.
You	see	the	Step	2:	Assign	Security	Groups	page	shown	in	Figure	11-18.	Using	an	existing	security
group	makes	configuration	considerably	easier	and	reduces	the	risk	of	users	failing	to	access
applications	and	resources.	However,	creating	a	new	security	group	does	enable	you	to	define	a
more	secure	environment	for	applications	that	need	it.

8.	 Select	the	Default-Launch	security	group	and	then	click	Next:	Configure	Security	Settings.
You	see	a	message	regarding	the	load	balancer’s	security.	If	you	did	select	one	of	the	secure
options,	the	same	screen	asks	you	to	provide	an	SSL	certificate	or	allow	AWS	to	generate	an	SSL
certificate	for	you.

9.	 Click	Next:	Configure	Health	Check.
You	see	the	Step	4:	Configure	Health	Check	page,	shown	in	Figure	11-19.	This	step	is	especially
important	because	it	ensures	that	the	Elastic	Load	Balancer	sends	requests	only	to	EC2	instances
that	are	able	to	respond.	Using	this	approach	adds	a	level	of	reliability	to	your	setup.	The	default
options	normally	work	quite	well,	but	you	can	choose	to	change	them	if	desired.

10.	 Click	Next:	Add	EC2	Instances.
The	wizard	presents	you	with	a	list	of	running	instances.	You	likely	have	only	one	such	instance
running	now	if	you	worked	through	the	examples	in	the	book.	Normally,	you	choose	as	many
instances	as	you	can	to	help	support	load	balancing.

11.	 Select	each	of	the	EC2	instances	you	want	to	use	and	then	click	Next:	Add	Tags.
The	tags	provide	information	that	you	can	use	for	various	organizational	needs.	You	don’t	need	to
define	any	unless	you	use	them	as	part	of	an	application-programming	requirement	or	some	other
need.

12.	 Click	Review	and	Create.
The	wizard	presents	you	with	a	screen	showing	the	selections	you	made.	Make	sure	to	check	the
information	carefully.

13.	 Click	Create.
AWS	starts	the	Elastic	Load	Balancer	for	you	and	shows	you	the	Load	Balancer	page,	shown
previously	in	Figure	11-15.

FIGURE	11-15:	The	Load	Balancer	page	tells	you	about	any	load	balancers	you	have	configured.

FIGURE	11-16:	Choose	a	load	balancer	type	based	on	the	kind	of	load	balancing	you	need.

FIGURE	11-17:	Define	the	basic	load	balancer	settings.

FIGURE	11-18:	Choose	a	security	group	for	your	load	balancer.

FIGURE	11-19:	Define	the	method	and	timing	used	to	verify	EC2	instance	health.

Defining	the	purpose	of	scaling
Load	balancing	generally	refers	to	server	farms,	groups	of	servers	connected	through	a	central	request
point.	Scaling	refers	to	the	capability	to	control	all	resources	used	to	handle	application	request	loads
in	an	automated	manner.	When	the	load	increases,	the	scaling	functionality	automatically	increases	the
required	resources.	Likewise,	a	decrease	on	load	makes	the	scaling	functionality	reduce	the	number	of
resources	in	use.	The	resources	appear	as	part	of	a	pool	so	that	other	applications	can	rely	on	the
resources	as	needed.	When	you’re	working	with	Amazon,	the	resources	may	seem	limitless,	but	they
do	truly	have	an	end.	Even	so,	most	applications	likely	won’t	ever	scratch	the	surface	of	the	resources
that	Amazon	makes	available,	so	scaling	doesn’t	become	a	problem.

	AWS	makes	a	distinct	difference	between	load	balancing	and	scaling.	The	Elastic	Load
Balancing	service	is	completely	separate	from	the	Auto	Scaling	service,	even	though	you	can
coordinate	the	efforts	of	the	two	services	to	provide	a	robust	end-user	experience.	Both	services
also	deal	with	EC2	instances,	but	in	different	ways,	so	the	outcomes	can	be	different.	The
important	difference	for	this	book	is	that	scaling	provides	a	means	of	automatically	adjusting
available	resources	to	meet	specific	application	demands.

You	can	adjust	the	functionality	and	performance	of	Auto	Scaling	in	a	number	of	ways.	The	following
methods	are	those	that	you	most	commonly	use	when	working	with	Auto	Scaling	to	provide	database
services	to	an	application:

Configuration:	The	method	that	you	use	to	configure	Auto	Scaling	determines	how	the	service
reacts	to	EC2	events.	For	example,	Auto	Scaling	automatically	detects	unhealthy	EC2	instances
and	replaces	them	with	healthy	instances.
Scheduling:	When	you	know	in	advance	that	your	application	will	have	a	heavy	load	placed	on	it,
you	can	create	a	schedule	to	ramp	up	the	number	of	EC2	instances.	This	proactive	approach	may
cost	slightly	more	to	use,	but	it	always	results	in	better	application	speed	as	long	as	you	schedule
the	increased	capacity	at	the	right	time.
Amazon	CloudWatch	events:	You	can	create	Amazon	CloudWatch	events	that	automatically	react
to	and	handle	application-scaling	events.	This	reactive	approach	provides	adjustments	as	needed,
but	you	may	see	a	delay	between	the	time	when	the	event	occurs	and	the	additional	resources
arrive.	Generally,	using	Amazon	CloudWatch	does	provide	faster	response	times	than	humans	can
provide.
Elastic	Load	Balancing	monitoring:	Combining	Auto	Scaling	with	Elastic	Load	Balancing	helps
you	maintain	a	balanced	server	load,	which	uses	resources	more	efficiently.	You	use	a	single	set	of
servers	to	interact	with	a	number	of	Auto	Scaling	groups	to	ensure	that	each	group	receives	the
resources	it	needs,	but	at	a	lower	cost	than	when	you	manage	each	Auto	Scaling	group
individually.

Working	with	Auto	Scaling
In	Chapters	6	and	8,	you	read	about	autoscaling,	a	built-in	feature	that	automatically	adjusts	how	your
setup	reacts	to	loads.	This	chapter	discusses	Auto	Scaling,	the	service	you	use	to	make	your	RDS	setup
autoscale	within	limits	that	you	specify.	When	you	see	the	term	autoscaling,	think	of	the	generic	use	of
a	feature	(not	necessarily	a	service)	to	make	applications,	services,	and	other	AWS	features	add	and
remove	resources	as	needed	to	make	applications	scale	better	and	provide	a	consistent	user
experience.	When	you	see	Auto	Scaling,	think	about	the	service	that	you	specifically	use	to	make
autoscaling	feasible	with	certain	AWS	services.	The	Auto	Scaling	feature	enables	your	EC2	instances
to	handle	loads	without	a	lot	of	human	intervention.	The	following	sections	tell	you	how	to	use	Auto
Scaling	to	make	your	AWS	services	provide	autoscaling	functionality.

Applying	Auto	Scaling
You	have	several	options	for	applying	Auto	Scaling	to	your	running	EC2	instance	(instances	that	have
an	Instance	State	other	than	Running	won’t	allow	you	to	apply	Auto	Scaling),	but	the	easiest	method	is
to	select	one	or	more	EC2	instances	in	the	Instances	page	and	then	choose	Actions     Instance
Settings     Attach	to	Auto	Scaling	Group.	You	see	the	Attach	to	Auto	Scaling	Group	dialog	box,
shown	in	Figure	11-20.

FIGURE	11-20:	Create	a	new	Auto	Scaling	Group	or	use	an	existing	one.

Because	you	haven’t	created	an	Auto	Scaling	group	earlier	in	the	book,	you	need	to	choose	the	A	New
Auto	Scaling	Group	option,	as	shown.	Type	a	name	for	the	group	in	the	Auto	Scaling	Group	Name
field,	such	as	MyAutoScaleGroup,	and	then	click	Attach.	AWS	then	automatically	creates	an	Auto
Scaling	group	for	you	that	uses	precisely	the	same	settings	as	the	selected	EC2	instances.

Removing	Auto	Scaling
Unfortunately,	you	can’t	remove	an	EC2	instance	from	an	Auto	Scaling	Group	in	the	Instances	page.
Use	the	following	steps	to	remove	an	EC2	instance	from	an	Auto	Scaling	Group.

1.	 Choose	Auto	Scaling     Auto	Scaling	Groups	in	the	Navigation	pane.
You	see	the	Auto	Scaling	Group	page.	You	may	need	to	click	an	Auto	Scaling	Groups	link	to	see
the	list	of	groups.

2.	 Select	the	Auto	Scaling	Group	for	the	EC2	instance.
3.	 Select	the	Instances	tab	of	that	group.

You	see	a	listing	of	EC2	instances	attached	to	that	group,	as	shown	in	Figure	11-21.
4.	 Select	the	EC2	instance	that	you	want	to	remove	and	then	choose	Actions     Detach	in	the

Instances	Panel.
Make	sure	that	you	choose	the	lower	of	the	two	Actions	buttons.	You	see	a	Detach	Instance	dialog
box.

5.	 Click	Detach	Instance.
AWS	removes	the	EC2	instance	from	the	Auto	Scaling	Group.

FIGURE	11-21:	Locate	the	EC2	instance	that	you	want	to	remove.

	Simply	deleting	the	Auto	Scaling	Group	terminates	the	attached	EC2	instance.	After	an	EC2
instance	is	terminated,	you	can’t	recover	it	and	must	recreate	the	instance	from	scratch.	The	best
way	to	avoid	this	problem	is	to	provide	your	EC2	instance	with	termination	protection	by
choosing	Instance	Settings     Change	Termination	Protection	on	the	Instances	page	for	the
selected	EC2	instance.	You	see	a	dialog	box	in	which	you	confirm	that	you	want	to	enable
termination	protection.

Chapter	12
Programming	Techniques	for	AWS	and

MySQL
IN	THIS	CHAPTER

	Performing	RDS-	and	SQL-specific	tasks
	Relying	on	MySQL	to	automate	tasks
	Obtaining	information	from	specialized	tables
	Transferring	MySQL	data	using	RDS

Chapter	11	acquaints	you	with	working	with	RDS	and	helps	you	get	all	the	installation	tasks	done	for
working	with	MySQL.	You	even	see	a	simple	example	of	using	MySQL	in	an	application	environment
in	the	section	about	adding	support	to	applications.	Of	course,	you	want	to	do	a	lot	more	than	simply
create	a	single	table	and	add	a	single	data	entry	to	it.	Consider	Chapter	11	to	be	the	start	of	the
process.

This	chapter,	meanwhile,	focuses	more	on	how	to	get	database	tasks	done	in	the	cloud	using	a
combination	of	RDS,	MySQL,	and	various	development	techniques.	This	chapter	isn’t	a	primer	on
using	MySQL	or	a	programming	language	primer;	it	assumes	that	you	already	possess	these	skills.	The
examples	are	meant	to	demonstrate	the	kinds	of	tasks	you	need	to	perform	given	the	differences	in
cloud	development.

Everything	you	can	do	with	a	network-based	database,	you	can	do	with	your	cloud-based	database.	In
addition,	as	covered	in	Chapter	11,	you	often	use	the	same	techniques,	but	with	a	slight	twist.	Now	you
need	to	consider	the	cloud-based	host	in	addition	to	the	database.	You	often	need	bits	of	information	to
make	RDS	and	MySQL	work	together	in	the	same	manner	as	you	work	with	MySQL	on	a	local
network.	This	chapter	helps	you	understand	how	to	perform	these	tasks	by	demonstrating	RDS	features
such	as	events,	option	groups,	and	parameter	groups.	You	interact	with	these	features	using	the
console,	Command	Line	Interface	(CLI),	and	Python.	However,	except	for	a	few	CLI-specific	tasks
that	the	chapter	tells	you	about,	you	can	perform	any	of	these	tasks	using	any	of	the	techniques
described.	The	chapter	provides	a	mix	so	that	you	can	see	all	three	methods	at	work.

As	with	a	local	network,	you	can	use	stored	procedures	and	functions	to	automate	tasks.	This	chapter
isn’t	designed	to	help	you	create	really	exotic	automation,	but	it	does	help	you	understand	the
ramifications	of	creating	such	automation	in	the	cloud.	You	have	some	significant	advantages	when
working	in	the	cloud,	but	you	also	need	to	keep	the	24/7	nature	of	the	cloud	in	mind.	Without	local
access,	things	all	too	easily	happen	in	the	remote	location	before	you	realize	that	they’re	even
scheduled.

The	MySQL/RDS	combination	also	gives	you	access	to	some	specialized	tables	that	you	use	to	help
create	a	better	development	environment	and	to	keep	track	of	various	RDS-specific	events.	These
specialized	tables	are	important	to	know	about	because	they	can	help	you	discover	issues	such	as

when	queries	are	slow.	You	can	also	determine	when	RDS-specific	events	occur,	such	as	performing
configuration	tasks	that	affect	MySQL.

The	final	sections	of	this	chapter	discuss	the	all-important	tasks	of	uploading	and	downloading	data.
You	usually	upload	data	during	the	initial	phases	of	placing	an	application	in	production.	However,
you	might	also	need	to	perform	uploads	on	other	occasions,	such	as	when	performing	an	update.
Downloads	usually	provide	a	means	of	obtaining	a	local	copy	of	data	to	help	improve	local
application	performance.	You	might	also	want	to	create	a	local	data	backup	in	case	of	emergencies.

Interacting	with	RDS
Chapter	11	gives	you	enough	information	to	configure	a	basic	RDS	setup	using	the	default	settings.
However,	RDS	has	more	to	offer	than	those	simple	settings.	You	should	consider	that	these	settings
affect	not	only	RDS	but	also	—	because	RDS	is	the	container	for	MySQL	—	MySQL	to	an	extent.	The
following	sections	help	you	explore	these	settings	using	the	console,	the	CLI,	and	Python.

Interacting	with	option	groups	using	the	console
Your	database	may	come	with	additional	features	that	you	can	manage	through	RDS.	The	features	may
make	it	easier	to	interact	with	data,	manage	the	database,	or	provide	additional	security.	The	features
vary	by	database,	but	here	are	the	currently	supported	DBMSs:

MariaDB
Microsoft	SQL	Server
MySQL
Oracle

These	additional	features	appear	as	RDS	options,	and	you	manage	them	using	option	groups.	The
sections	that	follow	use	MySQL	for	the	example	database.	You	can	read	more	about	the	features
available	for	individual	databases	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithOptionGroups.html

Even	though	the	features	vary	substantially,	interacting	with	the	option	groups	is	the	same	for	each	of
the	databases,	so	the	procedures	in	the	following	sections	will	work	for	any	of	the	supported
databases.

Defining	the	MySQL	option	groups
MySQL	supports	two	features	over	the	standard	setup.	The	availability	of	support	depends	on	the
MySQL	version.	Table	12-1	summarizes	these	option	groups.

TABLE	12-1	MySQL	additional	features

Option Option	ID Supported
Version Description

MariaDB
Audit
Plugin
Support

MARIADB_AUDIT_PLUGIN

MySQL
5.6.29	and
later,	and
MySQL
5.7.11	and
later

Records	database	activity,	such	as	user	logins	and	database	accesses,	so	that	you
can	better	understand	how	applications	access	your	database.	The	plugin	outputs
the	information	in	a	log	file.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_WorkingWithOptionGroups.html

MySQL
Cached
Memory
Support

MEMCACHED MySQL	5.6
and	later

Helps	improve	database	performance	by	letting	you	cache	key/value	pairs.	This
feature	relies	on	the	MySQL	InnoDB	table	functionality	described	at
https://dev.mysql.com/doc/refman/5.6/en/innodb-introduction.html.
Amazon	recommends	that	you	use	version	5.6.21b	because	of	bugs	found	in	earlier
versions.

	RDS	configures	a	default	option	group	for	you	during	setup.	You	can’t	modify	this	option
group.	It	provides	a	standard	set	of	options	for	a	particular	DBMS.	This	option	group	also	acts	as
the	basis	for	any	new	option	groups	you	create.	The	default	option	group	name	contains	the	word
default,	followed	by	the	DBMS	name	and	version	in	most	cases.	Consequently,	the	default	option
group	for	the	example	is	default:mysql-5-6.

Creating	a	new	option	group
Before	you	can	add	new	features	using	options	to	your	database,	you	need	to	create	an	option	group	by
following	these	steps:

1.	 Sign	into	AWS	using	your	user	account.
2.	 Navigate	to	the	RDS	Management	Console	at	https://console.aws.amazon.com/rds.

You	see	the	RDS	dashboard.
3.	 Choose	Option	Groups	in	the	Navigation	pane.

AWS	shows	the	default	option	group	as	a	minimum,	as	shown	in	Figure	12-1.	Note	that	when	you
select	a	group,	the	group	details	appear	below	the	group	listing.	In	addition,	when	selecting	the
default	group,	the	Add	Option,	Modify	Option,	Delete	Option,	and	Delete	Group	buttons	are	all
disabled.	This	is	because	you	can’t	do	anything	with	the	default	option	group	—	you	must	create	a
custom	group	to	control	anything	about	the	option	group	features.

4.	 Click	Create	Group.
You	see	the	Create	Option	Group	page,	shown	in	Figure	12-2.

5.	 Type	ExampleGroup	in	the	Name	field	and,	optionally,	a	description	in	the	Description	field.
Supplying	an	easily	recognized	option	group	name	makes	finding	the	option	group	in	the	list
possible	later.	In	addition,	you	want	to	be	sure	that	you	know	how	to	use	the	option	group.

6.	 Choose	mysql	in	the	Engine	field.

	The	Engine	drop-down	list	contains	the	names	of	all	the	supported	DBMSs,	even	if	you
don’t	currently	have	the	DBMS	installed	in	RDS.	Consequently,	you	need	to	exercise	care	in
choosing	an	engine	to	ensure	that	you	make	an	appropriate	selection.	Otherwise,	you	might	create
an	option	group	for	a	DBMS	that	you	never	intend	to	use.

7.	 Choose	5.6	in	the	Major	Engine	Version	field.
The	Major	Engine	Version	field	contains	the	versions	of	the	DBMSs	that	support	options.	You
can’t	accidentally	choose	an	older	version	of	a	DBMS	that	doesn’t	support	options.

https://dev.mysql.com/doc/refman/5.6/en/innodb-introduction.html
https://console.aws.amazon.com/rds

8.	 Click	Create.
You	see	the	group	added	to	the	option	group	list,	as	shown	in	Figure	12-3.	Note	that	AWS	enables
only	the	Add	Option	and	Delete	Group	buttons	in	addition	to	the	Create	Group	button	that	it
enabled	previously.	Because	you	don’t	have	any	options	added,	you	can’t	modify	or	delete	an
option.	The	initial	setup	uses	the	same	default	settings	as	the	default	group.

FIGURE	12-1:	The	option	group	list	contains	the	name	of	the	default	option	group	as	a	minimum.

FIGURE	12-2:	Define	the	option	group	specifics.

FIGURE	12-3:	AWS	adds	the	new	group	to	the	list.

Copying	an	existing	option	group
There	is	one	activity	that	you	can’t	perform	in	the	console,	and	that’s	copying	an	existing	option	group.
To	copy	an	existing	option	group,	you	rely	on	the	CLI	or	the	programming	interface.	To	create	a	new
option	group	called	CopiedGroup,	you	open	a	command	prompt	or	terminal	window	and	type	aws	rds
copy-option-group	--source-option-group-identifier	examplegroup	--target-option-group-
identifier	copygroup	--target-option-group-description	“Copied”.	You	must	provide	the	--target-
option-group-description	argument	in	this	case,	even	if	you	provide	a	blank	value,	or	the	command
won’t	succeed.	Figure	12-4	shows	the	output	from	this	command	(the	screenshot	doesn’t	show	all	the
typed	command	text).

FIGURE	12-4:	The	output	shows	the	particulars	of	the	new	option	group	you	create.

Adding	a	new	option
The	purpose	of	creating	a	new	option	group	is	to	assign	new	options	(features)	to	it.	The	following
steps	help	you	add	a	new	option	to	the	ExampleGroup	option	group	created	in	the	“Creating	a	new
option	group”	section,	earlier	in	this	chapter.

1.	 Select	the	option	group	you	want	to	modify	in	the	option	group	list.
You	see	the	details	for	that	group	presented	below	the	option	group	list.

2.	 Click	Add	Option.
AWS	displays	the	Add	Option	page,	shown	in	Figure	12-5.

3.	 Choose	one	of	the	options	in	the	Option	field.
The	example	uses	the	MEMCACHED	option.	Table	12-1	shows	the	options	available	for	MySQL.
Depending	on	the	option	you	select,	you	see	additional	settings	for	that	option.	Figure	12-6	shows
the	settings	for	the	MEMCACHED	option	(as	described	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.Options.memcached.html

Other	options	will	have	different	settings.
4.	 Configure	the	settings	for	the	option	you	want	to	add.

For	example,	you	must	provide	a	port	and	security	group	when	working	with	the	MEMCACHED
option.

5.	 Choose	Yes	in	the	Apply	Immediately	field	if	you	want	AWS	to	apply	the	change	immediately.
The	problem	with	applying	the	change	immediately	is	that	AWS	also	applies	any	other	queued
changes	immediately,	which	could	mean	that	your	application	suddenly	slows	down	so	that	the
database	can	perform	a	maintenance	cycle.	The	best	idea	is	to	wait	until	a	regularly	scheduled
maintenance	cycle	to	ensure	that	your	application	continues	to	run	as	expected	unless	you	actually
do	need	the	change	immediately.

6.	 Click	Add	Option.
AWS	adds	the	new	option	to	the	option	group.	The	option	name	appears	in	the	Options	column	of
the	option	group	list.	In	addition,	you	see	the	option	listed	below	the	option	group	list,	as	shown	in
Figure	12-7.

FIGURE	12-5:	Choose	a	new	option	to	add	to	the	option	group.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.Options.memcached.html

FIGURE	12-6:	Define	the	settings	for	the	new	option	group.

FIGURE	12-7:	You	see	the	option	added	to	the	option	group.

Modifying	an	option	group
When	modifying	an	option,	you	change	the	option	settings	by	using	a	process	similar	to	the	one	used

when	you	initially	added	the	option.	As	with	adding	an	option,	you	start	by	selecting	the	option	group
that	you	want	to	change	and	then	click	Modify	Option.	The	Modify	Option	page	looks	similar	to	the
one	shown	in	Figure	12-5	for	creating	an	option.	After	you	select	an	option	to	change,	you	see	the	list
of	settings	shown	in	Figure	12-6.	Click	Modify	Option	to	make	the	changes	permanent.

Deleting	an	option
Deleting	an	option	means	removing	it	from	the	option	group.	In	this	case,	you	choose	the	option	group
you	want	to	modify	and	then	click	Delete	Option.	You	see	a	Delete	Option	page	like	the	one	shown	in
Figure	12-8.	Select	one	or	more	options	to	delete	and	then	click	Delete.

FIGURE	12-8:	Use	the	Delete	Option	page	to	remove	options	from	the	option	group.

Associating	an	option	group	with	a	database
Until	you	associate	an	option	group	with	a	database,	it	just	sits	there	doing	nothing.	However,	you
don’t	perform	the	association	in	the	Option	Groups	page.	The	following	steps	help	you	associate	an
option	group	with	a	database	(the	process	for	associating	an	option	group	with	a	snapshot	is	similar):

1.	 Choose	Instances	in	the	Navigation	pane.
You	see	a	list	of	database	instances.

2.	 Select	the	instance	you	want	to	modify.
AWS	presents	the	instance	details	below	the	instance	list.

3.	 Choose	Instance	Actions   Modify.
The	Modify	DB	Instance	page	appears.

4.	 Scroll	down	to	the	Database	Options	group.
You	see	the	options	shown	in	Figure	12-9.	Note	the	Option	Group	field,	in	which	you	choose	the
option	group	you	want	to	use.

5.	 Click	Continue.
You	see	a	list	of	pending	changes	for	the	database	instance.	Verify	that	you	selected	the	correct
database	instance.

6.	 Click	Modify	DB	Instance.
AWS	makes	the	changes	you	requested	(or	queues	them	for	later	updates	during	the	normal
maintenance	cycle).

FIGURE	12-9:	Choose	the	option	group	you	want	to	use	with	the	database	instance.

Deleting	an	option	group
When	you	no	longer	need	a	particular	option	group,	you	can	remove	it	from	your	configuration	to	help
keep	clutter	to	a	minimum.	To	delete	a	group,	select	its	entry	in	the	option	group	list	and	then	click
Delete	Group.	AWS	asks	you	to	verify	that	you	actually	want	to	delete	the	groups.	Click	Delete	to
complete	the	task.

Using	the	CLI	to	work	with	events
AWS	tracks	important	events	associated	with	the	database	instances	you	create.	Events	tell	you	when
AWS	performs	certain	tasks,	such	as	performing	a	database	backup.	You	also	discover	status	changes,
such	as	when	the	database	becomes	temporarily	unavailable	or	when	a	configuration	change	occurs.
The	page	at	http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html
gives	a	complete	list	of	events.	Even	though	you	can	interact	with	events	by	using	both	the	console	and
a	custom	application,	the	following	sections	describe	how	to	work	with	events	using	the	CLI.

Obtaining	an	event	listing
To	see	what	sorts	of	things	have	happened	on	your	server,	you	need	to	obtain	an	event	listing.	The
describe-events	command	helps	you	perform	this	task.

The	problem	with	this	command	is	that	the	defaults	sometimes	don’t	help	you	actually	see	any	events.
For	example,	if	you	type	aws	rds	describe-events	and	press	Enter,	you	might	think	that	the	CLI
displays	a	list	of	all	events.	However,	the	list	is	often	blank.

To	obtain	a	list	of	events,	you	must	sometimes	provide	additional	information.	Most	commonly,	you
need	to	provide	a	starting	date	using	the	--start-time	argument.	For	example,	you	might	decide	that
you	want	to	see	events	starting	at	midnight	on	May	22.	In	this	case,	you	type	aws	rds	describe-events
--start-time	2017-05-22T00:00Z	and	press	Enter.	Figure	12-10	shows	an	example	of	the	output	you
might	see.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html

FIGURE	12-10:	Provide	command-line	arguments	to	obtain	the	output	you	want.

Note	that	the	output	shows	the	date,	message,	Amazon	Resource	Name	(ARN),	and	other	information
about	each	event.	You	can	find	a	complete	list	of	command	line	arguments	for	this	command	at
http://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html.

Subscribing	to	an	event
Subscribing	to	an	event	means	that	AWS	notifies	you	about	it.	Getting	timely	information	about	your
RDS	configuration	is	essential	because	it	could	mean	the	difference	between	everyone	working	and
everyone	twiddling	their	thumbs	waiting	for	you	to	act.	To	subscribe	to	an	event,	you	need	to	tell	RDS
where	to	send	the	event	information,	which	means	creating	an	entry	in	the	Simple	Notification	Service
(SNS).	You	might	have	noted	that	you	automatically	receive	information	about	Elastic	Beanstalk	(EB)
after	you	configure	it.	That’s	because	EB	automatically	creates	an	SNS	entry	for	you	and	assigns	it	to
your	EB	setup.	RDS	doesn’t	provide	the	same	service	because	it	has	no	way	of	knowing	precisely
how	to	configure	the	event	notifications.

To	begin	this	process,	you	must	create	the	SNS	entry.	An	entry	consists	of	two	parts:	a	topic	and	a
subscription	to	that	topic.	The	topic	is	simply	an	entry	that	describes	the	kind	of	information	that	SNS
passes	along.	To	create	an	RDS	topic,	type	aws	sns	create-topic	--name	RDSAlerts	and	press	Enter.
The	output	includes	an	ARN	that	you	must	use	when	creating	the	subscription.	(You	can	find	a	list	of
SNS-related	CLI	commands	at	http://docs.aws.amazon.com/cli/latest/reference/sns/).

The	subscription	tells	how	and	where	to	deliver	content.	This	example	assumes	that	you	want	to	use
email,	but	you	have	a	number	of	options,	as	described	at
http://docs.aws.amazon.com/cli/latest/reference/sns/subscribe.html.	To	create	the
subscription	for	this	example,	type	aws	sns	subscribe	--topic-arn	arn:aws:sns:us-west-
2:889745118473:RDSAlerts	--protocol	email	--notification-endpoint
john@johnmuellerbooks.com	and	press	Enter.	The	ARN	is	the	one	that	AWS	provides	as	output
from	the	first	step.	Of	course,	you	need	to	give	your	own	email	address	as	an	endpoint,	rather	than	use
mine.	Figure	12-11	shows	typical	output	from	these	two	steps	(the	screenshot	doesn’t	show	all	of	the

http://docs.aws.amazon.com/cli/latest/reference/rds/describe-events.html
http://docs.aws.amazon.com/cli/latest/reference/sns/
http://docs.aws.amazon.com/cli/latest/reference/sns/subscribe.html
mailto:john@johnmuellerbooks.com

typed	command	text).

FIGURE	12-11:	Create	a	topic	and	subscription	as	setup	for	obtaining	RDS	event	notifications.

	Note	that	the	subscription	output	says	pending	confirmation.	You	receive	an	email	from	AWS
with	a	confirmation	link	as	part	of	the	process.	Before	you	can	receive	notifications,	you	must
confirm	the	subscription.

At	this	point,	you	can	finally	subscribe	to	the	RDS	events.	A	simple	subscription	provides	you	with	all
of	the	events.	However,	you	can	reduce	the	number	of	events	you	receive	by	including	the	options
described	at	http://docs.aws.amazon.com/cli/latest/reference/rds/create-event-
subscription.html.	For	this	example,	type	aws	rds	create-event-subscription	--subscription-
name	GetRDSEvents	--sns-topic-arn	arn:aws:sns:us-west-2:889745118473:RDSAlerts	and	press
Enter.	Again,	you	need	to	provide	the	ARN	of	the	SNS	topic.	The	subscription	name	in	this	case	is	the
RDS	subscription	name,	which	appears	in	the	Event	Subscriptions	page	of	the	RDS	dashboard.	Figure
12-12	shows	the	output	from	this	command	(the	screenshot	doesn’t	show	all	of	the	typed	command
text).

FIGURE	12-12:	The	RDS	event	subscription	is	ready	for	use.

PUBLISHING	YOUR	OWN	EVENTS

http://docs.aws.amazon.com/cli/latest/reference/rds/create-event-subscription.html

You	may	find	it	helpful	to	publish	event	information	to	SNS	or	RDS	event	subscribers	using	the	SNS	publish	command.	An
event	can	contain	a	topic,	message,	and	other	information	in	specific	formats.	You	can	send	a	message	globally	or	to	just	a
specific	topic	or	target	ARN.	Using	the	publish	command	isn’t	a	replacement	for	other	methods	of	dealing	with
communication	issues.	You	should	save	this	form	of	communication	for	specific	RDS	or	SNS-related	events	—	special
occurrences	that	fall	outside	the	normal	message	realm.	The	page	at
http://docs.aws.amazon.com/cli/latest/reference/sns/publish.html	tells	you	more	about	the	publish	command.

Obtaining	a	list	of	event	subscriptions
If	you	have	subscriptions,	you	also	need	a	way	to	list	them.	To	obtain	a	list	of	event	subscriptions	and
the	subscription	status,	type	aws	rds	describe-event-subscriptions	and	press	Enter.	The	output	will
look	like	Figure	12-12	in	this	case,	except	that	the	Status	field	should	indicate	Active.	If	you	had	more
than	one	subscription,	you’d	see	a	list	of	all	the	RDS	subscriptions	(active	or	not).	Unfortunately,	the
list	can	get	really	long	for	a	complex	setup,	so	you	can	use	the	various	options	described	at
http://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-

subscriptions.html	to	make	the	list	manageable.

Modifying	an	event	subscription
You	may	decide	that	an	event	subscription	isn’t	working	at	some	point.	Rather	than	delete	and	recreate
the	subscription,	you	can	choose	to	modify	it	instead.	All	the	options	that	are	available	when	you
create	a	subscription	are	available	when	modifying	a	subscription.	The	page	at
http://docs.aws.amazon.com/cli/latest/reference/rds/modify-event-

subscription.html	gives	you	the	required	listing	of	options.

Say	that	you	decide	that	you	want	to	limit	the	events	to	those	generated	by	an	instance.	Using	the
previous	examples	as	a	starting	point,	you	type	aws	rds	modify-event-subscription	--subscription-
name	GetRDSEvents	--source-type	db-instance	and	press	Enter.	Note	that	you	don’t	use	an	ARN	in
this	case,	just	the	RDS-specific	event	name.	Figure	12-13	shows	the	output	of	this	example.	Notice	that
the	Status	field	now	says	modifying	(the	screenshot	doesn’t	show	all	the	typed	command	text).

FIGURE	12-13:	Modify,	rather	than	recreate,	a	subscription	when	possible.

Deleting	an	event	subscription
Eventually	you	need	to	remove	unneeded	subscriptions.	At	first,	you	might	think	that	you	would	simply
remove	the	RDS	subscription,	but	what	you	really	need	to	do	is	remove	the	RDS	subscription	and	then
potentially	the	SNS	subscription	and	topic	as	well.	Because	you	create	the	event	subscription	in	this
example	using	a	custom	SNS	topic	and	subscription,	this	section	shows	how	to	remove	all	three.	You
begin	by	removing	the	RDS	subscription.	Type	aws	rds	delete-event-subscription	--subscription-
name	GetRDSEvents	and	press	Enter.

http://docs.aws.amazon.com/cli/latest/reference/sns/publish.html
http://docs.aws.amazon.com/cli/latest/reference/rds/describe-event-subscriptions.html
http://docs.aws.amazon.com/cli/latest/reference/rds/modify-event-subscription.html

To	remove	a	subscription,	you	must	first	know	the	subscription	ARN,	which	you	haven’t	seen	so	far	in
the	chapter.	The	SNS	subscription	ARN	differs	from	the	RDS	subscription	ARN	and	the	SNS	topic
ARN.	To	obtain	the	subscription	ARN,	you	list	the	subscriptions	for	a	particular	topic	using	the	list-
subscriptions-by-topic	command.	In	this	case,	you	type	aws	sns	list-subscriptions-by-topic	--
topic-arn	arn:aws:sns:us-west-2:889745118473:RDSAlerts	and	press	Enter	(substituting	the	topic
ARN	for	your	particular	setup).	Figure	12-14	shows	typical	output	from	this	command	(your	data
values	will	differ	from	those	shown).	Note	the	SubscriptionArn	entry;	this	is	the	value	you	supply	to
remove	the	subscription.

FIGURE	12-14:	Obtain	the	subscription	ARN	so	that	you	can	remove	the	subscription.

Now	that	you	have	a	subscription	ARN,	you	can	use	the	unsubscribe	command	to	remove	the
subscription.	Using	the	ARN	shown	in	Figure	12-14	as	an	example,	you	type	aws	sns	unsubscribe	--
subscription-arn	arn:aws:sns:us-west-2:889745118473:RDSAlerts:bb72051a-f95b-482a-90cd-
46e427e95285	and	press	Enter.	You	won’t	see	any	output,	nor	will	you	receive	a	confirmation	email.
To	confirm	that	the	subscription	is	actually	gone,	you	need	to	use	the	list-subscriptions-by-
topic	command	again.

Removing	the	topic	is	the	last	step.	In	this	case,	you	use	the	delete-topic	command.	Using	the	ARN
from	the	previous	examples,	you	type	aws	sns	delete-topic	--topic-arn	arn:aws:sns:us-west-
2:889745118473:RDSAlerts	and	press	Enter.	As	with	unsubscribing,	you	won’t	see	any	output.	To
verify	that	the	command	is	successful,	you	type	aws	sns	list-topics	and	press	Enter.	The	topic	no
longer	appears	on	the	list.

Employing	programming	techniques	to	read	and	write	parameter
groups
Parameter	groups	affect	the	database	engine	configuration.	You	use	them	to	change	how	the	database
engine	reacts	in	certain	circumstances.	Every	parameter	in	a	parameter	group	has	a	default	value	based
on	the	DBMS	you	use.	However,	when	viewing	the	parameters,	not	every	parameter	has	an	actual
entry.

	Every	database	instance	you	create	has	a	default	parameter	group	that	contains	the	default
settings	for	that	database.	To	see	the	default	parameters,	choose	Parameter	Groups	in	the
Navigation	pane	for	the	RDS	Dashboard,	and	then	click	the	Go	to	Details	Page	icon	next	to	the
parameter	group	you	want	to	see.	For	example,	when	working	with	MySQL	5.6,	you	see	a
default.mysql5.6	parameter	group.	Figure	12-15	shows	a	typical	example	of	how	the	parameters
appear.	The	most	important	thing	to	remember	is	that	you	can’t	modify	a	default	parameter	group.

Instead,	you	must	create	a	custom	parameter	group,	modify	its	settings,	and	then	assign	it	to	the
database	you	want	to	affect.

FIGURE	12-15:	Parameter	groups	contain	parameters	that	affect	database	operation.

You	can	perform	all	parameter	group	tasks	using	the	console,	the	CLI,	or	programmatic	means.	The
following	sections	demonstrate	these	methods	using	Python,	but	the	concepts	are	the	same	no	matter
which	path	you	follow.	You	can	access	the	example	code	for	this	chapter	in	the	AWS4D4D;	12,
Parameter	Groups.ipynb	file	in	the	downloadable	source,	as	explained	in	the	Introduction.

Creating	a	new	parameter	group
The	only	thing	you	can	do	with	a	default	parameter	group	is	to	read	its	settings.	To	make	changes,	you
must	create	a	custom	parameter	group	and	then	assign	it	to	the	database	in	question.	Rely	on	the
create_db_parameter_group()	function	to	create	new	parameter	groups,	as	shown	here:

import	boto3

client	=	boto3.client('rds')

	

client.create_db_parameter_group(

				DBParameterGroupName='MyTestGroup',

				DBParameterGroupFamily='MySQL5.6',

				Description='A	test	parameter	group')

When	the	creation	process	is	successful,	AWS	sends	information	about	the	new	parameter	group,	as
shown	here:

{'DBParameterGroup':	{'DBParameterGroupArn':

		'arn:aws:rds:us-west-2:889745118473:pg:mytestgroup',

		'DBParameterGroupFamily':	'mysql5.6',

		'DBParameterGroupName':	'mytestgroup',

		'Description':	'A	test	parameter	group'},

	'ResponseMetadata':	{'HTTPHeaders':	{

			'content-length':	'619',

			'content-type':	'text/xml',

			'date':	'Thu,	25	May	2017	14:54:41	GMT',

			'x-amzn-requestid':

						'14d47779-415a-11e7-a45f-7f0e0cb815c0'},

		'HTTPStatusCode':	200,

		'RequestId':	'14d47779-415a-11e7-a45f-7f0e0cb815c0',

		'RetryAttempts':	0}}

Note	the	HTTPStatusCode	is	200,	which	indicates	success.	You	also	get	some	useful	additional
information	not	found	in	the	console,	such	as	the	new	parameter	group	ARN.

Listing	parameter	groups

Depending	on	the	size	of	your	installation,	you	might	need	to	obtain	a	listing	of	the	parameter	groups	in
use.	In	this	case,	you	rely	on	the	describe_db_parameter_groups()	function	shown	here:

for	group	in	client.describe_db_parameter_groups()	\

				['DBParameterGroups']:

									

				print(group['DBParameterGroupName'],

										'\n		',	group['Description'])

The	code	shows	how	to	obtain	all	the	parameter	groups.	However,	you	can	provide	various	inputs	and
filters	to	limit	the	output,	as	described	at
http://boto3.readthedocs.io/en/latest/reference/services/rds.html#RDS.Client.describe_db_parameter_groups

Here’s	the	output	from	this	example:
default.mysql5.6

			Default	parameter	group	for	mysql5.6

mytestgroup

			A	test	parameter	group

Assigning	a	parameter	group	to	a	database
Just	because	you	create	a	parameter	group	doesn’t	mean	that	the	database	is	actually	using	it.	You	must
assign	the	parameter	group	to	the	database.	The	modify_db_instance()	function	performs	this	task,
as	shown	in	the	following	code:

client.modify_db_instance(

				DBInstanceIdentifier='MyDatabase',

				DBParameterGroupName='MyTestGroup')	\

				['ResponseMetadata']['HTTPStatusCode']

When	successful,	you	see	an	output	of	200	in	this	case.	The	code	automatically	drills	down	into	the
information	you	need.	To	verify	that	you	have	indeed	changed	the	parameter	group,	use	the	following
code:

client.describe_db_instances(

				DBInstanceIdentifier='MyDatabase')	\

				['DBInstances'][0]['DBParameterGroups']

The	output	should	look	similar	to	this:
[{'DBParameterGroupName':	'mytestgroup',

		'ParameterApplyStatus':	'pending-reboot'}]

Note	that	the	ParameterApplyStatus	entry	says	pending-reboot.	To	make	the	change	current,	you
must	reboot	the	database	first	using	the	reboot_db_instance()	function.	When	the	database	is
actually	using	the	currently	selected	parameter	group,	you	see	a	ParameterApplyStatus	entry	value
of	in-sync	instead.

	Rebooting	the	server	means	that	the	server	becomes	inaccessible	during	the	reboot	cycle.
Ensure	that	any	users	who	are	working	the	database	log	off	before	you	perform	a	reboot.
Otherwise,	you	may	lose	data	or	experience	other	issues.

Copying	a	parameter	group
One	task	you	must	perform	using	the	CLI	is	creating	a	copy	of	a	parameter	group.	However,	you	can’t
create	a	copy	of	the	default	parameter	group	—	you	can	create	copies	only	of	custom	groups	that	you
create.	You	use	the	copy-db-parameter-group	command	to	perform	this	task.	If	you	want	to	create	a

http://boto3.readthedocs.io/en/latest/reference/services/rds.html#RDS.Client.describe_db_parameter_groups

copy	of	MyTestGroup	as	TestCopy,	you	type	aws	rds	copy-db-parameter-group	--source-db-
parameter-group-identifier	MyTestGroup	--target-db-parameter-group-identifier	TestCopy	--
target-db-parameter-group-description	“Copy	of	a	custom	group.”	and	press	Enter.	The	command
requires	both	the	target	identifier	and	description	entries	to	work.	Figure	12-16	shows	the	result	of
using	this	command	(the	screenshot	doesn’t	show	all	of	the	typed	command	text).	Note	that	the	output
does	include	the	parameter	group’s	ARN.

FIGURE	12-16:	Use	the	CLI	to	copy	an	existing	custom	parameter	group.

Reading	default	and	custom	parameters
You	can	see	an	entire	list	of	all	the	parameters	using	the	console	as	shown	in	Figure	12-15.	However,
the	list	can	be	overwhelming	and	viewing	the	information	you	actually	need	is	hard.	One	of	the
advantages	of	working	with	parameters	in	code	is	that	you	can	filter	the	output	in	a	number	of	ways.
The	following	code	shows	one	such	technique:

for	parameter	in	client.describe_db_parameters(

				DBParameterGroupName='MyTestGroup')	\

				['Parameters']:

				

				if	('ParameterValue')	in	parameter:

								print(parameter['ParameterName'],	'	',

														parameter['ParameterValue'],	'	',

														parameter['IsModifiable'])

Note	that	you	must	use	the	describe_db_parameters()	function	to	obtain	the	information.	In	this
case,	you	end	up	with	a	list	of	parameters	that	have	values	assigned	to	them,	as	shown	here	(your	list
may	vary):

basedir			/rdsdbbin/mysql			False

binlog_cache_size			32768			True

binlog_format			MIXED			True

datadir			/rdsdbdata/db/			False

default_storage_engine			InnoDB			False

explicit_defaults_for_timestamp			1			True

general_log_file

			/rdsdbdata/log/general/mysql-general.log			False

gtid-mode			OFF			False

innodb_buffer_pool_size

			{DBInstanceClassMemory*3/4}			True

innodb_data_home_dir			/rdsdbdata/db/innodb			False

innodb_file_per_table			1			True

innodb_flush_method			O_DIRECT			True

Using	this	list,	you	know	which	parameters	already	have	values	assigned	and	which	of	those	you	can
modify.	For	example,	you	can’t	modify	basedir,	but	you	can	modify	binlog_cache_size.	The	reason
that	this	code	works	is	that	the	dictionary	that	AWS	returns	contains	keys	only	for	entries	that	have

values.	Consequently,	when	a	parameter	lacks	an	assigned	value,	it	also	lacks	the	ParameterValue
key.

You	can	also	use	coded	techniques	to	locate	information	for	a	specific	parameter,	such	as
binlog_cache_size.	Here’s	code	you	can	use	for	this	task:

for	parameters	in	client.describe_db_parameters(

				DBParameterGroupName='MyTestGroup')	\

				['Parameters']:

				

				if	('binlog_cache_size')	in	\

								parameters['ParameterName']:

								for	k,	v	in	parameters.items():

												print(k,	'	=	',	v)

The	output	in	this	case	is
ParameterName		=		binlog_cache_size

ParameterValue		=		32768

Description		=		The	size	of	the	cache	to	hold	the	SQL

	statements	for	the	binary	log	during	a	transaction.

Source		=		system

ApplyType		=		dynamic

DataType		=		integer

AllowedValues		=		4096-18446744073709547520

IsModifiable		=		True

ApplyMethod		=		pending-reboot

Note	the	AllowedValues	entry.	It	tells	you	the	range	of	values	you	can	use	when	changing	a	value	in
code.	Also	notice	that	any	changes	you	make	to	this	parameter	will	require	a	reboot	before	they
become	permanent.

Writing	modifiable	parameters
As	previously	mentioned,	you	can’t	modify	a	default	parameter	group.	Consequently,	this	section
applies	only	to	custom	parameter	groups	that	you	create.	To	perform	a	modification,	you	use	the
modify_db_parameter_group()	and	supply	the	parameter	group	name	and	a	list	of	one	or	more
parameters	to	modify,	as	shown	here.

print(client.modify_db_parameter_group(

				DBParameterGroupName='MyTestGroup',

				Parameters=

				[

								{

												'ParameterName':'binlog_cache_size',

												'ParameterValue':'65536',

												'ApplyMethod':'pending-reboot'

								},

],)['ResponseMetadata']['HTTPStatusCode'])

	

for	parameters	in	client.describe_db_parameters(

				DBParameterGroupName='MyTestGroup')	\

				['Parameters']:

				if	('binlog_cache_size')	in	\

								parameters['ParameterName']:

												print(parameters['ParameterValue'])

Parameters	always	contains	a	list	of	items	to	change,	even	if	you	have	just	one	item.	The	dictionary
definition	for	each	change	must	contain	the	ParameterName,	ParameterValue,	and	ApplyMethod
entries	as	shown.	You	can	set	the	ApplyMethod	to	immediate	if	desired.	However,	an	immediate
change	might	not	appear	for	five	or	more	minutes,	so	you	need	to	verify	that	the	change	is	in	place
before	you	rely	on	it	for	your	application.	The	output	from	this	code	is

200

65536

The	200	output	shows	that	the	change	is	successful	and	the	65536	output	shows	the	new	cache	size.
Always	verify	your	changes	to	ensure	that	the	change	you	think	you	made	is	the	change	you	actually
made.

Removing	a	custom	parameter	group
At	some	point,	you	might	need	to	remove	an	existing	parameter	group.	All	you	need	is	the
delete_db_parameter_group()	function	with	the	name	of	the	parameter	group	you	want	to	remove.
The	following	code	shows	how	to	perform	this	task.	In	addition,	it	shows	how	to	add	error	trapping	to
your	Python	code	so	that	it	can	handle	failures	from	RDS	when	performing	tasks.

from	botocore.exceptions	import	ClientError

	

try:

				result	=	client.delete_db_parameter_group(

				DBParameterGroupName='MyTestGroup')

				

				print(result['ResponseMetadata']['HTTPStatusCode'])

				

except	ClientError	as	e:

				if	e.response['Error']['Code']	==	\

								'DBParameterGroupNotFound':

								print('Parameter	group	is	missing.')

				else:

								print("Unexpected	error:	%s"	%	e)

Error	handling	relies	on	the	botocore	package.	You	can	find	more	about	this	package	at
http://botocore.readthedocs.io/en/latest/index.html.	An	error-handling–specific	example
appears	at	http://botocore.readthedocs.io/en/latest/client_upgrades.html#error-
handling.	In	addition	to	the	specific	value	shown	in	the	code	for	locating	the	error	code,	you	might
also	find	these	values	from	the	exception	dictionary	useful:

['ResponseMetadata']['HTTPStatusCode']:	Provides	the	HTTP	status	code	of	the	call.

['ResponseMetadata']['RequestId']:	Tells	you	the	request	identifier	for	the	call	so	that	you
can	obtain	additional	information	from	locations	such	as	logs.
['Error']['Message']:	Contains	the	full	message	for	the	error,	which	you	can	simply	repeat	for
unknown	error	types.
['Error']['Type']:	Provides	the	sender	information.

Working	with	MySQL	Code
MySQL	runs	within	an	RDS	container.	What	you	might	not	realize	is	that	this	means	you	can	make	calls
within	your	stored	procedures,	functions,	and	triggers	to	the	container.	This	feature	is	important
because	it	lets	you	monitor	how	MySQL	and	RDS	interact	within	the	database	itself.	To	use	this
feature,	you	must	modify	existing	scripts.	Of	course,	this	sort	of	script	modification	tends	to	tie	you
into	the	AWS	platform,	so	you	need	to	consider	it	with	care.	The	following	sections	offer	insights	on
working	with	MySQL	code	within	an	RDS	container.

Enabling	stored	procedures,	functions,	and	triggers
In	some	cases,	you	find	that	you	can’t	properly	execute	MySQL	stored	procedures,	functions,	and
triggers	within	RDS.	For	example,	this	situation	can	occur	when	using	binary	logging.	If	you	encounter
this	issue,	you	can	use	the	following	steps	to	enable	use	of	stored	procedures,	functions,	and	triggers.

http://botocore.readthedocs.io/en/latest/index.html
http://botocore.readthedocs.io/en/latest/client_upgrades.html#error-handling

1.	 Create	a	new	custom	parameter	group	using	the	technique	shown	in	the	“Creating	a	new
parameter	group”	section	of	the	chapter.

2.	 Assign	the	parameter	group	to	your	database	using	the	technique	shown	in	the	“Assigning	a
parameter	group	to	a	database”	section	of	the	chapter.

3.	 Modify	the	log_bin_trust_function_creators	parameter	as	shown	in	the	“Writing
modifiable	parameters”	section	of	the	chapter	and	set	its	value	to	1.

4.	 Reboot	your	database	server	as	described	in	the	“Assigning	a	parameter	group	to	a
database”	section	of	the	chapter.

Using	stored	procedures
Your	stored	procedures	will	work	as	they	always	have	from	a	MySQL	perspective.	However,	because
you’re	working	with	RDS,	you	also	have	RDS-specific	system	stored	procedures	that	you	can	use.
These	calls	all	include	RDS	in	their	name,	and	you	can	see	a	list	of	them	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.SQLRef.html.
You	can	access	the	example	code	for	this	section	in	the	CallRDSFromMySQL.sql	file	in	the
downloadable	source,	as	explained	in	the	Introduction.

To	use	these	stored	procedures,	you	call	them	as	you	would	any	other	stored	procedure.	For	example,
CALL	mysql.rds_show_configuration	shows	the	number	of	hours	that	AWS	retains	the	binary	logs,
as	shown	in	Figure	12-17.	You	can	obtain	this	information	using	other	methods,	but	this	call	makes	the
information	accessible	to	your	MySQL	scripts,	where	you	can	use	it	to	ensure	that	your	cloud
application	works	as	originally	envisioned.	You	can	read	more	about	this	call	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_show_configuration.html

and	you	can	find	additional	uses	for	it	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html

FIGURE	12-17:	Rely	on	the	RDS-specific	stored	procedures	to	help	you	manage	RDS	in	MySQL.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.SQLRef.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_show_configuration.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html

	You	must	verify	the	applicable	version	of	MySQL	when	using	one	of	these	calls.	Many	of	them
work	only	with	MySQL	versions	5.6	and	5.7.	However,	some	also	work	with	MySQL	version
5.5.	The	important	thing	is	to	ensure	that	you’re	not	trying	to	use	a	call	that	won’t	work	with	your
version	of	MySQL.	The	documentation	makes	finding	the	version	information	easy	—	it	appears
as	part	of	the	Usage	Notes	section.	In	addition,	you	find	related	commands,	if	any,	in	the	Related
Topics	section.

	Fortunately,	environments	such	as	MySQL	Workbench	make	using	these	special	calls	easier.
When	you	type	CALL	mysql.,	the	application	displays	a	list	of	these	special	commands,	as
shown	in	Figure	12-18.	Double-clicking	the	entry	you	want	to	use	adds	it	to	the	file.

FIGURE	12-18:	Use	MySQL	Workbench	functionality	to	make	working	with	RDS	commands	easier.

Some	commands,	such	as	mysql.rds_collect_global_status_history,	require	special	setup
before	you	can	use	them.	The	information	for	this	command	appears	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_collect_global_status_history.html

Click	the	Managing	the	Global	Status	History	link	for	details	on	performing	the	required	setup.	In	this
case,	you	must	change	a	parameter	in	the	parameter	group	associated	with	your	database,	among	other
tasks.	The	procedure	in	the	“Enabling	stored	procedures,	functions,	and	triggers”	section,	earlier	in
this	chapter,	shows	how	you	perform	this	task	when	using	certain	commands.

Working	with	the	MySQL/RDS	Tables
In	addition	to	specialized	code,	RDS	provides	access	to	special	tables	containing	information	about
RDS	functionality.	MySQL	also	gives	you	access	to	a	few	cloud-related	tables.	For	example,	you	can
learn	about	RDS	replication	status	by	monitoring	the	entries	in	a	table.	As	with	using	commands,
MySQL	Workbench	helps	when	it	comes	to	working	with	specialized	MySQL	and	RDS	tables.	Type

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/mysql_rds_collect_global_status_history.html

SELECT	*	FROM	mysql.	and	you	see	a	list	of	these	tables.	Figure	12-19	shows	the	special	RDS
tables	you	access	by	adding	the	letter	r	to	the	input.

FIGURE	12-19:	Special	tables	make	it	easier	to	monitor	your	cloud	experience.

To	see	this	feature	in	action,	type	SELECT	*	FROM	mysql.rds_replication_status;	and	click
Execute	Script.	Figure	12-20	shows	typical	output	from	this	command.	You	can	access	the	example
code	for	this	section	in	the	UseRDSTables.sql	file	in	the	downloadable	source,	as	explained	in	the
Introduction.

FIGURE	12-20:	View	the	replication	status	of	your	database	from	the	RDS-supplied	log	file.

	Many	of	the	most	useful	pieces	of	information	come	from	log	files	that	AWS	maintains	as	you
use	RDS	and	MySQL.	You	can	read	about	these	log	files	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.MySQL.html

For	example,	SELECT	*	FROM	mysql.general_log;	displays	general	log	information	for	your
database.	However,	as	with	many	other	RDS	features,	you	must	change	parameters	in	the
parameter	group	to	enable	the	logs.	The	“Enabling	stored	procedures,	functions,	and	triggers”
section,	earlier	in	this	chapter,	shows	you	how	to	change	parameters	as	needed.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_LogAccess.Concepts.MySQL.html

Interestingly	enough,	one	of	the	few	logs	that	you	can’t	access	within	MySQL	Workbench	is	probably
the	most	important:	the	error	log.	You	can	access	the	error	log	from	the	console,	the	CLI,	or
programmatically,	but	not	as	part	of	a	script.	Follow	these	steps	to	see	the	error	log	in	the	console:

1.	 Select	a	database	instance	in	the	Instances	page	of	the	RDS	dashboard.
You	see	a	Logs	button	at	the	bottom	of	the	details	area,	as	shown	in	Figure	12-21.

2.	 Click	Logs.
AWS	displays	the	Recent	Events	&	Logs	tab,	shown	in	Figure	12-22.

3.	 Scroll	to	the	Logs	section	and	click	View	next	to	the	error	log	that	you	want	to	see.
AWS	displays	the	log	content,	as	shown	in	Figure	12-23.	(Click	Close	to	close	the	log	when	you
finish	viewing	it.)

FIGURE	12-21:	Locate	the	Logs	button	at	the	bottom	of	the	details	area.

FIGURE	12-22:	Display	the	recent	events	and	logs	page.

FIGURE	12-23:	The	error	logs	show	events	and	problems	that	have	occurred	while	MySQL	is	running.

Performing	Data	Uploads
Data	uploads	normally	occur	when	you	initially	set	up	and	configure	an	application.	You	likely	already
have	data	that	you	want	to	use	on	a	local	network.	The	upload	process	sends	the	data	from	your	local
network	to	the	cloud.	Of	course,	you	might	also	have	other	reasons	to	perform	data	uploads.	No	matter
what	the	reason,	this	part	of	the	chapter	demonstrates	how	to	perform	a	data	upload	by	using	MySQL
Workbench.

	The	technique	you	see	in	this	chapter	doesn’t	transfer	absolutely	everything	from	your	local	or
network	hard	drive	to	MySQL	on	the	RDS	server.	It	assumes	that	you	simply	want	to	move	data.
If	you	want	to	perform	a	complete	transfer	of	a	database,	as	might	be	done	during	an	initial
production	move	from	a	local	network	to	RDS,	you	need	to	follow	the	much	longer	(and	more
convoluted)	process	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html

However,	in	general,	this	process	is	extreme	overkill	for	the	developer,	and	you	likely	won’t
need	to	perform	it.

Before	you	begin	this	process,	you	must	have	a	local	file	to	use	for	uploading	to	the	RDS
configuration,	a	copy	of	MySQL	Workbench	installed,	and	a	connection	to	your	MySQL	setup	on	RDS.
The	following	steps	assume	that	you	have	a	local	or	network	copy	of	a	.sql	file	that	contains
everything	needed	to	recreate	your	database.	You	must	also	have	the	rights	required	to	access	the
database	on	RDS,	which	may	require	superuser	rights	(see	the	“Enabling	stored	procedures,	functions,
and	triggers”	section,	earlier	in	this	chapter,	for	details	about	overcoming	problems	with	running
scripts	on	RDS).

1.	 Open	MySQL	Workbench	and	connect	to	RDS.
You	see	the	connection	open	as	normal.

2.	 Choose	Server   Data	Import.
You	see	the	Data	Import	page	open,	as	shown	in	Figure	12-24.

3.	 Choose	Import	from	Dump	Project	Folder	and	type	a	location	for	the	folder.
The	folder	contains	a	series	of	scripts	used	to	recreate	the	database	schema	and	objects	it	contains.

4.	 Choose	the	objects	you	want	to	import	in	the	Select	Database	Objects	to	Import	list.
This	feature	is	available	only	when	you	use	project	folders.

5.	 Click	Start	Import.
For	a	really	small	setup	such	as	FirstDatabase,	the	process	happens	within	a	second	or	two.

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Importing.NonRDSRepl.html

FIGURE	12-24:	Use	the	Data	Import	page	to	configure	a	data	upload.

	To	see	the	new	database	in	Navigator,	you	must	click	the	Refresh	button	in	the	upper-right
corner	of	the	display.	The	new	database	and	associated	objects	will	appear	after	MySQL
Workbench	queries	RDS.

Performing	Data	Downloads
Data	downloads	normally	occur	when	you	want	to	create	a	local	copy	of	the	data	that	you’ve	worked
with	in	the	cloud.	There	are	all	kinds	of	reasons	to	perform	this	task,	with	backup	and	application
performance	forming	the	two	most	common	needs.	Normally,	the	data	download	goes	into	a	read-only
database	because	you	don’t	want	any	local	changes	to	the	data.	Otherwise,	you	might	find	yourself	in
the	untenable	position	of	having	to	referee	local	changes	against	those	made	by	other	people	in	the
cloud	(a	situation	that	usually	results	in	some	level	of	data	loss).	This	section	helps	you	perform	a	data
download	using	MySQL	Workbench.

	As	with	data	uploads,	you	can	perform	data	downloads	that	provide	you	with	a	complete,
replicated	copy	of	your	MySQL	database.	This	process	can	be	long	and	a	bit	complicated,	which
is	why	you	should	avoid	using	it	when	possible.	The	page	at
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Exporting.NonRDSRepl.html

details	this	longer	process.	Most	developers,	however,	are	more	interested	in	actual	data.	If	your
goal	is	to	transfer	a	database	as	an	entity,	which	includes	the	tables,	views,	stored	procedures,
and	functions,	but	not	all	the	settings	and	other	setup	that	go	with	the	database,	the	shorter	process

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/MySQL.Procedural.Exporting.NonRDSRepl.html

in	this	chapter	will	work	fine	and	cause	you	fewer	problems.

Before	you	begin	this	process,	make	sure	you	have	a	local	copy	of	MySQL	Workbench	installed	and
configured	to	access	your	MySQL	database	on	RDS.	These	steps	help	you	create	a	local	or	network
copy	of	your	database.

1.	 Open	MySQL	Workbench	and	connect	to	RDS.
You	see	the	connection	open	as	normal.

2.	 Choose	Server   Data	Export.
You	see	the	Data	Export	page	open,	as	shown	in	Figure	12-25.

3.	 Select	a	list	of	schemas	you	want	to	export.
The	example	assumes	that	you	choose	FirstDatabase.	However,	you	can	export	any	(or	all)	of	the
schemas	in	the	list.

4.	 Click	the	schema	and	select	all	the	schema	entry	objects	you	want	to	export.
The	example	has	only	MyTable	to	select.

5.	 Select	all	the	objects	you	want	to	export.
The	example	exports	all	stored	procedures	and	functions,	events,	and	triggers.

6.	 Choose	Export	to	Dump	Project	Folder	and	type	a	location	for	the	folder.
A	dump	project	folder	contains	a	series	of	scripts	designed	to	recreate	the	database	and	all	its
objects.

7.	 Select	Include	Create	Schema.
Selecting	this	option	enables	you	to	easily	recreate	the	database	structure	in	a	local	copy	of
MySQL.

8.	 Click	Start	Export.
For	a	really	small	setup	such	as	FirstDatabase,	the	process	happens	within	a	second	or	two.

FIGURE	12-25:	Use	the	Data	Export	page	to	save	a	local	copy	of	your	data.

Chapter	13
Gaining	NoSQL	Access	Using	DynamoDB

IN	THIS	CHAPTER
	Understanding	the	DynamoDB	differences
	Getting	and	configuring	DynamoDB
	Creating	a	simple	database
	Performing	queries	using	various	techniques

The	Structured	Query	Language	(SQL)	associated	with	relational	databases	(those	that	use	tables	of
related	data)	makes	up	the	bulk	of	Database	Management	System	(DBMS)	applications	today.	Using
Relational	DBMS	(RDBMS)	strategies	makes	sense	for	most	kinds	of	data	because	information	such
as	accounting,	customer	records,	inventory,	and	a	vast	array	of	other	business	information	naturally
lends	itself	to	the	tabular	form,	in	which	columns	describe	the	individual	data	elements	and	rows
contain	the	individual	records.

	However,	some	data,	such	as	that	used	by	big	data	or	real-time	applications,	is	harder	to
model	using	an	RDBMS.	Consequently,	NoSQL,	or	non-SQL,	databases	become	more	attractive
because	they	use	other	means	to	model	data	that	doesn’t	naturally	lend	itself	to	tables.	Because
business,	science,	and	other	entities	rely	heavily	on	these	nontraditional	data	sources	today,
NoSQL	is	more	popular	than	SQL.	DynamoDB	is	Amazon’s	answer	to	the	need	for	a	NoSQL
database	for	various	kinds	of	data	analysis.	This	chapter	begins	by	helping	you	understand
DynamoDB	so	that	you	can	better	use	it	to	address	your	specific	NoSQL	needs.

Developers	often	need	localized	access	to	the	DBMS.	With	this	in	mind,	you	might	find	that	you	need	a
local	copy	of	DynamoDB	to	use	in	your	work.	The	local	copy	won’t	act	as	a	substitute	for	the	cloud-
based	version,	but	having	it	could	save	you	considerable	time	as	you	work	through	various	issues	or
try	to	understand	how	DynamoDB	actually	works.	The	chapter	shows	how	to	download	a	local	copy
of	DynamoDB.

Before	you	can	do	anything	substantial	with	DynamoDB,	you	need	to	set	up	and	configure	a	copy	on
AWS.	That’s	where	you’ll	use	it	for	the	most	part,	after	you	get	past	the	early	experimentation	stage,
and	it’s	where	the	production	version	of	any	applications	your	organization	develops	will	appear.	The
next	section	of	this	chapter	looks	at	the	process	for	using	DynamoDB	online.

The	remainder	of	the	chapter	focuses	on	a	test	database	that	you	create	locally.	You	develop	a	simple
database	using	a	local	copy	of	DynamoDB,	perform	some	essential	tasks	with	it,	and	then	upload	it	to
your	online	copy	of	DynamoDB.	You	usually	follow	this	same	path	when	working	with	DynamoDB	in
a	real-world	project.

Considering	the	DynamoDB	Features
DynamoDB	provides	access	to	all	the	common	NoSQL	features,	which	means	that	you	don’t	need	to
worry	about	issues	like	creating	a	schema	or	maintaining	tables.	You	use	a	NoSQL	database	in	a	free-
form	manner	when	compared	to	a	SQL	database,	and	NoSQL	gives	you	the	capability	to	work	with
large	data	with	greater	ease	than	a	SQL	database	allows.	The	following	sections	give	you	an	idea	of
just	what	DynamoDB	provides	and	why	NoSQL	databases	are	important	to	businesses.

Getting	a	quick	overview	of	NoSQL
The	main	reason	to	use	NoSQL	is	to	address	the	needs	of	modern	applications.	At	one	time,
developers	created	applications	that	resided	on	just	one	or	two	platforms.	An	application	development
team	might	work	on	an	application	upgrade	for	months	and	use	a	limited	number	of	data	types	to
perform	data	manipulation.	Today,	the	application	environment	is	completely	different,	making	the	use
of	RDBMSs	hard	for	modern	applications.	NoSQL	addresses	these	needs	in	a	number	of	ways:

Developers	no	longer	limit	themselves	to	a	set	number	of	data	types.	Modern	applications	use	data
types	that	are	structured,	semistructured,	unstructured,	and	polymorphic	(a	data	type	used	with	a
single	interface	that	can	actually	work	with	objects	of	different	underlying	types).
Short	development	cycles	make	using	an	RDBMS	hard,	requiring	a	formal	change	process	to
update	the	schema	and	migrate	the	data	to	the	new	setup.	A	NoSQL	database	is	flexible	enough	to
allow	ad	hoc	changes	that	are	more	in	line	with	today’s	development	cycle.
Many	applications	today	appear	as	services,	rather	than	being	installed	on	a	particular	system.	The
use	of	a	Service	Oriented	Architecture	(SOA)	means	that	the	application	must	be	available	24
hours	a	day	and	that	a	user	can	access	the	same	application	using	any	sort	of	device.	NoSQL
databases	can	scale	to	meet	the	demands	of	such	an	application	because	they	don’t	have	all	the
underlying	architecture	of	an	RDBMS	to	weigh	them	down.
The	use	of	cloud	computing	means	that	data	must	appear	in	a	form	that	works	with	multiple	online
services,	even	when	the	developers	don’t	know	the	needs	of	those	services	at	the	time	that	a
development	cycle	begins.	Because	NoSQL	doesn’t	rely	on	formal	schemas	and	access
methodologies,	you	can	more	easily	create	an	environment	where	any	service,	anywhere,	can
access	the	data	as	needed.

	NoSQL	supports	the	concept	of	auto-sharding,	which	lets	you	store	data	across	multiple
servers.	When	working	with	an	RDBMS,	the	data	normally	appears	on	a	single	server	to	ensure
that	the	DBMS	can	perform	required	maintenance	tasks.	The	use	of	multiple	servers	makes	NoSQL
scale	better	and	function	more	reliably	as	well,	because	you	don’t	have	just	one	failure	point.
DynamoDB	extends	the	concept	of	auto-sharding	by	making	cross-region	replication	possible	(see
the	article	at
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.CrossRegionRepl.html

for	more	details).
Modern	languages,	such	as	R,	provide	data	analysis	features	that	rely	on	the	flexible	nature	of
unstructured	data	to	perform	its	tasks.	Because	modern	business	makes	decisions	based	on	all	sorts

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.CrossRegionRepl.html

of	analysis,	it	also	needs	modern	languages	that	can	perform	the	required	analysis.	You	can	find	a
quick	R	tutorial	at	https://www.datacamp.com/courses/free-introduction-to-r.

NoSQL	Limitations
Even	the	best	data	storage	strategy	has	limits	and	NoSQL	is	no	exception.	Actually,	most	of	these
limits	exist	in	DynamoDB	rather	than	NoSQL	as	a	whole.	The	products	you	choose	determine	just	what
you	can	do	with	NoSQL,	but	you	won’t	find	any	products	today	that	do	it	all.	The	following	list
describes	NoSQL	limits	as	defined	by	the	DynamoDB	implementation:

Data	organization:	Most	NoSQL	databases	provide	several	methods	of	organizing	data.
DynamoDB	doesn’t	support	all	the	various	types.	What	you	get	is	a	key-value	pair	setup,	in	which
a	key	provides	a	unique	reference	to	the	data	stored	in	the	value.	The	key	and	the	value	are	both
data,	but	the	key	must	provide	unique	data	so	that	the	database	can	locate	a	particular	piece	of
information.	A	value	can	contain	anything	from	a	simple	integer	to	a	document	to	a	complex
description	of	a	particular	process.	NoSQL	doesn’t	place	any	sort	of	limit	on	what	the	value	can
contain,	which	makes	it	an	extremely	agile	method	of	storing	data.
Specialized	organizational	types:	NoSQL	databases	typically	support	a	number	of	other
organizational	types	that	DynamoDB	doesn’t	currently	support	natively.	For	example,	you	can’t
create	a	graph	store	that	shows	interactions	of	networks	of	data,	such	as	those	found	in	social
media.	Examples	of	NoSQL	databases	that	do	provide	this	support	are	Neo4J
(https://neo4j.com/)	and	Giraph	(http://giraph.apache.org/).	Fortunately,	AWS	recently
added	integration	with	Titan	(http://titan.thinkaurelius.com/),	a	distributed	graph
database,	to	supply	a	level	of	this	functionality.
Document	support:	DynamoDB	also	doesn’t	support	documents	such	as	those	found	in	MongoDB
(https://www.mongodb.com/).	A	document	is	a	complex	structure	that	can	contain	key-value
pairs,	key-array	pairs	(an	array	can	contain	a	series	of	like	values),	and	even	other	documents.
Documents	are	a	superset	of	the	key-value	pairs	that	DynamoDB	does	support.
Wide-column	data	stores:	DynamoDB	doesn’t	support	the	specialized	wide-column	data	stores
found	in	products	such	as	Cassandra	(http://cassandra.apache.org/)	and	HBase
(https://hbase.apache.org/).	These	kinds	of	data	stores	find	use	in	large	dataset	analysis.
Using	this	kind	of	data	store	enables	databases,	such	as	Cassandra	and	HBase,	to	group	data	in
columns	rather	than	rows,	which	is	how	most	databases	work.

Differentiating	between	NoSQL	and	relational	databases
Previous	sections	of	the	chapter	may	lead	you	to	believe	that	RDBMS	development	is	archaic	because
it	lacks	support	for	modern	agile	development	methods.	However,	RDBMS	and	NoSQL	databases
actually	fulfill	needs	in	two	different	niches,	so	a	business	often	needs	access	to	both	kinds	of	data
storage.	Of	course,	that’s	why	AWS	includes	both	(see	Chapters	11	and	12	for	more	information	about
how	AWS	handles	RDBMS	requirements).

	Even	though	NoSQL	provides	some	significant	advantages,	you	need	to	consider	how	an

https://www.datacamp.com/courses/free-introduction-to-r
https://neo4j.com/
http://giraph.apache.org/
http://titan.thinkaurelius.com/
https://www.mongodb.com/
http://cassandra.apache.org/
https://hbase.apache.org/

RDBMS	can	help	your	organization	as	well.	The	main	consideration	in	favor	of	NoSQL	is
whether	the	data	is	unstable	or	especially	complex.	In	this	case,	NoSQL	presents	the	best	strategy
for	storing	the	data	because	it	provides	the	best	flexibility	options.

However,	an	RDBMS	offers	some	special	features	as	well.	For	example,	an	RDBMS	offers
consistency	because	of	the	schema	that	seems	to	hold	it	back	in	other	areas.	The	schema	ensures	that
the	data	in	the	database	actually	meets	the	criteria	you	set	for	it,	which	means	that	you’re	less	likely	to
receive	incomplete,	missing,	errant,	or	otherwise	unusable	data	from	the	data	source.	The	consistency
offered	by	an	RDBMS	is	a	huge	advantage	because	it	means	that	developers	spend	less	time	coding
around	potential	data	problems	—	they	can	focus	on	the	actual	data	processing,	presentation,	and
modification.

An	RDBMS	usually	relies	on	normalization	to	keep	the	data	size	small.	When	working	with	a	NoSQL
database,	you	can	see	a	lot	of	repeated	data,	which	consumes	more	resources	than	an	equivalent
RDBMS	implementation.	Of	course,	computer	resources	are	relatively	inexpensive	today,	but	given
that	you’re	working	in	a	cloud	environment,	the	charges	for	inefficiencies	can	add	up	quickly.	The
thing	to	remember	about	having	too	much	repeated	data	is	that	it	also	tends	to	slow	down	parsing,
which	means	that	a	properly	normalized	RDBMS	database	can	often	find	and	manipulate	data	faster
than	its	NoSQL	counterpart	can.

NoSQL	and	RDBMS	databases	offer	different	forms	of	reliability	as	well.	Although	a	NoSQL
database	scales	well	and	can	provide	superior	speed	by	spreading	itself	over	multiple	servers,	the
RDBMS	offers	superior	reliability	of	the	intrinsic	data.	You	can	depend	on	the	data	in	an	RDBMS
being	of	a	certain	type	with	specific	characteristics.	In	addition,	you	get	all	the	data	or	none	of	the
data,	rather	than	bits	and	pieces	of	the	data,	as	is	possible	with	a	NoSQL	database.

Because	an	RDBMS	provides	the	data	in	a	certain	form,	it	can	also	provide	more	than	NoSQL	in	the
way	of	built-in	query	and	analysis	capabilities.	Some	of	the	major	RDBMSs	offer	a	substantial	array
of	query	and	analysis	capabilities	so	that	developers	don’t	spend	a	lot	of	time	reinventing	the	wheel,
and	so	that	administrators	can	actually	figure	out	what	data	is	available	without	also	getting	a	degree	in
development.	When	the	form	of	the	data	is	right	(the	lack	of	a	wealth	of	large	objects),	an	RDBMS	can
also	present	results	faster	because	the	organization	makes	parsing	the	information	easier.	DynamoDB
partially	offsets	the	enhanced	query	capabilities	of	an	RDBMS	by	providing	a	secondary	index
capability	(read	more	at
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

	As	with	many	data	issues,	no	one	single	database	solution	works	well	in	every	case.	Both
RDBMS	and	NoSQL	databases	have	definite	places	in	an	organization.	In	fact,	that’s	why	some
vendors	offer	both	solutions	and	some	are	working	on	methods	to	integrate	the	two.
Interoperability	between	RDBMS	and	NoSQL	databases	is	becoming	more	common	with	the
development	of	APIs	for	products	such	as	MongoDB	by	IBM	(see	the	series	of	articles	that
begins	at	http://www.ibm.com/developerworks/data/library/techarticle/dm-
1306nosqlforjson1/	for	details).	IBM	is	creating	a	data	representation,	query	language,	and
wire	protocol	to	make	DB2	and	MongoDB	interactions	relatively	seamless.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1306nosqlforjson1/

Defining	typical	uses	for	DynamoDB
Most	of	the	use	cases	for	DynamoDB	found	at	https://aws.amazon.com/dynamodb/	revolve	around
unstructured,	changeable	data.	One	of	the	more	interesting	uses	of	DynamoDB	is	to	provide	language
support	for	Duolingo	(https://www.duolingo.com/nojs/splash),	a	product	that	helps	people
learn	another	language	by	using	a	game-like	paradigm.	Making	learning	fun	generally	makes	it	easier
as	well,	and	learning	another	language	can	be	a	complex	task	that	requires	as	much	fun	as	one	can	give
it.

Obtaining	a	continuous	stream	of	data	is	important	in	some	cases,	especially	in	monitoring	roles.	For
example,	BMW	uses	DynamoDB	to	collect	sensor	data	from	its	cars.	The	use	of	streams	in	DynamoDB
(see	http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
for	more	information)	makes	this	kind	of	application	practical.	Dropcam
(https://nest.com/camera/meet-nest-cam/),	a	company	that	offers	property	monitoring,	is
another	example	of	using	streaming	to	provide	real-time	updates	for	an	application.

DynamoDB	actually	provides	a	wide	range	of	impressive	features,	which	you	can	read	about	at
https://aws.amazon.com/dynamodb/details/.	The	problem	is	finding	use	cases	for	these	new
features,	such	as	ElasticMap	Reduce	integration,	in	real-world	applications	today.	The	lack	of	use
cases	is	hardly	surprising	because	most	of	this	technology	is	so	incredibly	new.	The	important
takeaway	here	is	that	DynamoDB	has	a	place	alongside	RDS	for	more	organizations,	and	you	need	to
find	the	mix	that	works	best	for	your	needs.

Downloading	a	Local	Copy	of	DynamoDB
In	contrast	to	many	of	the	other	AWS	services,	you	can	actually	get	a	local	copy	of	DynamoDB	that	you
can	work	with	offline.	Using	DynamoDB	offline,	on	your	local	machine,	means	that	you	can	try	various
tasks	without	incurring	costs	or	worrying	about	potential	connectivity	issues.	In	addition,	you	can	use
DynamoDB	in	a	test	environment,	in	which	you	use	a	copy	of	your	data	to	mimic	real-world	situations.
The	following	sections	show	how	to	obtain	and	install	a	local	copy	and	then	use	your	copy	with
Python	to	perform	a	test.

Performing	the	installation
To	start	using	a	local	copy	of	DynamoDB,	you	need	Java	installed	on	your	system	because	Amazon
supplies	DynamoDB	as	a	.jar	file.	You	can	obtain	a	user-level	version	of	Java	at
https://www.java.com/en/download/.	However,	if	you	plan	to	perform	any	customizations	or	feel
you	might	need	debugging	support,	then	you	need	a	developer	version	of	Java	(the	Java	Development
Kit	or	JDK)	that	you	obtain	from
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html.
Make	sure	to	get	the	latest	version	of	Java	to	ensure	that	DynamoDB	works	as	expected.

The	next	step	is	to	download	a	copy	of	DynamoDB	and	extract	the	files	in	the	archive.	You	can	find
links	for	this	part	of	the	process	at
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html

Note	that	you	can	get	versions	of	DynamoDB	that	work	with	Maven	(see
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html#DynamoDBLocal.Maven

and	Eclipse	(see	https://aws.amazon.com/eclipse/).	This	chapter	assumes	that	you	use	the	pure

https://aws.amazon.com/dynamodb/
https://www.duolingo.com/nojs/splash
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://nest.com/camera/meet-nest-cam/
https://aws.amazon.com/dynamodb/details/
https://www.java.com/en/download/
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html#DynamoDBLocal.Maven
https://aws.amazon.com/eclipse/

Java	version	and	that	you’ve	extracted	the	downloaded	archive	to	a	folder	named	DynamoDB	on	your
hard	drive.	You	may	need	to	bury	the	archive	a	level	or	two	deep,	but	make	sure	that	the	path	doesn’t
contain	spaces.	The	main	file	you	deal	with	is	DynamoDBLocal.jar.

Starting	DynamoDB	locally
Open	a	command	prompt	or	terminal	window	and	ensure	that	you’re	in	the	location	where	you
extracted	the	DynamoDB	archive	(using	the	CD	command).	Type	java	-
Djava.library.path=./DynamoDBLocal_lib	-jar	DynamoDBLocal.jar	–sharedDb	and	press	Enter	to
start	DynamoDB.	Depending	on	your	operating	system,	you	see	some	startup	messages	like	those
shown	in	Figure	13-1.

FIGURE	13-1:	DynamoDB	displays	some	startup	messages	after	you	execute	the	command.

	When	working	with	Windows,	you	should	also	see	the	message	shown	in	Figure	13-2	(other
platforms	may	show	other	messages).	This	firewall	message	tells	you	that	port	8000	isn’t
currently	open.	To	make	DyanmoDB	work	properly,	you	must	allow	access.	If	you	want	to	change
the	port,	use	the	-port	command-line	switch	with	a	different	port	number.	The	page	that	contains
the	DynamoDB	links	also	has	a	list	of	other	command-line	switches	near	the	bottom,	or	you	can
use	the	-help	command-line	switch	to	see	a	listing	for	these	command	line	switches	locally.

FIGURE	13-2:	Allow	access	to	port	8000	through	your	firewall.

Overcoming	the	Windows	OSError	issue
When	working	with	Windows,	you	may	encounter	a	problem	that	involves	seeing	an	OSError	message
output	for	some	Python	calls,	even	if	your	code	is	correct.	The	problem	is	with	the	tz.py	file	found	in
the	\Users\<UserName>\Anaconda3\Lib\site-packages\dateutil\tz	folder	of	your	Anaconda
setup	(the	same	file	exists	for	every	Python	setup,	but	in	different	folders).	To	fix	this	problem,	you
must	change	the	code	for	the	_naive_is_dst()	function	so	that	it	looks	like	this:

def	_naive_is_dst(self,	dt):

				#	Original	Code

				timestamp	=	_datetime_to_timestamp(dt)

				#return	time.localtime(timestamp	+

																											time.timezone).tm_isdst

				#	Bug	Fix	Code

				if	timestamp+time.timezone	<	0:

								current_time	=	timestamp	+	time.timezone	+

																							31536000

				else:

								current_time	=	timestamp	+	time.timezone

	

				return	time.localtime(current_time).tm_isdst

Fortunately,	you	don’t	have	to	make	the	change	yourself.	You	can	find	the	updated	tz.py	file	in	the
downloadable	source,	as	explained	in	the	Introduction.	Just	copy	it	to	the	appropriate	folder	on	your
system.

Testing	your	DynamoDB	installation
At	this	point,	you	can	begin	using	your	local	copy	of	DynamoDB	to	perform	tasks.	This	section
demonstrates	how	to	access	your	local	copy	using	Python.	You	can	access	the	example	code	for	this
chapter	in	the	AWS4D4D;	13,	Local	DynamoDB.ipynb	file	in	the	downloadable	source,	as	explained
in	the	Introduction.	To	start,	you	must	create	a	Boto3	client,	as	normal,	but	note	the	use	of	the
endpoint_url	argument.

import	boto3

client	=	boto3.client('dynamodb',

																					endpoint_url='http://localhost:8000')

	The	use	of	the	endpoint_url	argument	lets	you	easily	move	your	code	to	the	cloud.	You	just
need	to	remove	the	argument	and	you	use	your	cloud-based	copy	of	AWS	instead	of	the	local
copy.	You	use	the	same	commands	as	you	do	when	accessing	the	AWS	cloud-based	copy	of
DynamoDB,	which	appear	at
http://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html.	The
following	code	ensures	that	the	table	doesn’t	already	exit,	creates	the	table,	and	then	displays	its
status:

table_list	=	client.list_tables()['TableNames']

	

if	'TestDB'	in	table_list:

				print('TestDB	Exists')

				client.delete_table(TableName='TestDB')

				print('Deleted	TestDB')

	

table	=	client.create_table(

				TableName	=	'TestDB',

				KeySchema	=

				[

								{

												'AttributeName':	'EmployeeID',

												'KeyType':	'HASH'

								},

								{

												'AttributeName':	'EmployeeName',

												'KeyType':	'RANGE'

								}

],

				AttributeDefinitions	=

				[

								{

												'AttributeName':	'EmployeeID',

												'AttributeType':	'N'

								},

								{

												'AttributeName':	'EmployeeName',

												'AttributeType':	'S'

								}

],

				ProvisionedThroughput	=

				{

								'ReadCapacityUnits':	10,

								'WriteCapacityUnits':	10

				}

)

	

print(table['TableDescription']['TableStatus'])

The	output	of	this	code	should	simply	say	ACTIVE.	The	table	variable	contains	a	wealth	of
information	about	the	new	table,	so	you	should	explore	it	for	additional	details.	To	stop	your	local
copy	of	DynamoDB,	press	Ctrl+C	at	the	command	prompt	or	terminal	window.

	To	get	a	functional	setup	that	really	does	help	you	understand	DynamoDB	a	bit	better,	you	need
to	install	other	products,	such	as	Python	2.7.	You	can	see	an	example	of	the	series	of	steps	needed
at
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TicTacToe.Phase1.html

This	tutorial	covers	the	processes	needed	to	build	a	tic-tac-toe	game	using	DynamoDB,	Python,

http://boto3.readthedocs.io/en/latest/reference/services/dynamodb.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TicTacToe.Phase1.html

and	a	few	other	bits	and	pieces.

Creating	a	Basic	DynamoDB	Setup
You	have	a	number	of	ways	to	work	with	DynamoDB.	For	example,	you	can	go	with	the	local	option
described	in	the	“Downloading	a	Local	Copy	of	DynamoDB”	section.	However,	the	local	option	is
really	only	good	for	experimentation.	If	you	want	to	start	creating	a	production	system,	you	need	to	get
onto	AWS	and	perform	the	required	tasks	in	the	cloud.

Before	you	can	do	anything	with	DynamoDB,	you	must	create	an	instance	of	it,	just	as	you	do	for	RDS.
The	following	procedure	helps	you	get	started	with	DynamoDB	so	that	you	can	perform	some
interesting	tasks	with	it:

1.	 Sign	into	AWS	using	your	user	account.
2.	 Navigate	to	the	DynamoDB	Management	Console	at

https://console.aws.amazon.com/dynamodb.
You	see	a	Welcome	page	that	contains	interesting	information	about	DynamoDB	and	what	it	can	do
for	you.	However,	you	don’t	see	the	actual	console	at	this	point.	Notice	the	Getting	Started	Guide
link,	which	you	can	use	to	obtain	access	to	tutorials	and	introductory	videos.

3.	 Click	Create	Table.
You	see	the	Create	DynamoDB	Table	page,	shown	in	Figure	13-3.	Amazon	assumes	that	most
people	have	worked	with	an	RDBMS	database,	so	the	instructions	for	working	with	RDS	are
fewer	and	less	detailed.	Notice	the	level	of	detail	provided	for	DynamoDB.	The	wizard	explains
each	part	of	the	table	creation	process	carefully	to	reduce	the	likelihood	that	you	will	make
mistakes.

4.	 Type	TestDB	in	the	Table	Name	field.
Pick	a	descriptive	name	for	your	table.	In	this	case,	you	need	to	remember	that	your	entire	database
could	consist	of	a	single,	large	table.

5.	 Type	EmployeeID	in	the	Primary	Key	field	and	choose	Number	for	its	type.
When	working	with	a	NoSQL	database,	you	must	define	a	unique	value	as	the	key	in	the	key-value
pair.	An	employee	ID	is	likely	to	provide	a	unique	value	across	all	employees.	Duplicated	keys
will	cause	problems	because	you	can’t	uniquely	identify	a	particular	piece	of	data	after	the	key	is
duplicated.
A	key	must	also	provide	a	simple	value.	When	working	with	DynamoDB,	you	have	a	choice	of
making	the	key	a	number,	string,	or	binary	value.	You	can’t	use	a	Boolean	value	because	you	would
have	only	a	choice	between	true	and	false.	Likewise,	other	data	types	won’t	work	because	they	are
either	too	complex	or	don’t	offer	enough	choices.

	Notice	the	Add	Sort	Key	check	box.	Selecting	this	option	lets	you	add	a	secondary	method
of	locating	data.	Using	a	sort	key	lets	you	locate	data	using	more	than	just	the	primary	key.	For
example,	in	addition	to	the	employee	ID,	you	might	also	want	to	add	a	sort	key	based	on	employee

https://console.aws.amazon.com/dynamodb

name.	People	know	names;	they	tend	not	to	know	IDs.	However,	a	name	isn’t	necessarily	unique:
Two	people	can	have	the	same	name,	so	using	a	name	as	your	primary	key	is	a	bad	idea.
Not	shown	in	Figure	13-3	is	the	option	Use	Default	Settings.	The	default	settings	create	a	NoSQL
table	that	lacks	a	secondary	index,	allows	a	specific	provisioned	capacity,	and	sets	alarms	for
occasions	when	applications	exceed	the	provisioned	capacity.	A	provisioned	capacity	essentially
determines	the	number	of	reads	and	writes	that	you	expect	per	second.	Given	that	this	is	a	test
setup,	a	setting	of	5	reads	and	5	writes	should	work	well.	You	can	read	more	about	provisioned
capacity	at
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html

6.	 Select	Add	Sort	Key.
You	see	another	field	added	for	entering	a	sort	field,	as	shown	in	Figure	13-4.	Notice	that	this
second	field	is	connected	to	the	first,	so	the	two	fields	are	essentially	used	together.

7.	 Type	EmployeeName	in	the	sort	key	field	and	set	its	type	to	String.
8.	 Click	Create.

You	see	the	Tables	page	of	the	DynamoDB	Management	Console,	shown	in	Figure	13-5.	This
figure	shows	the	list	of	tables	in	the	left	pane	and	the	details	for	the	selected	table	in	the	right	pane.
Each	of	the	tabs	tells	you	something	about	the	table.	The	More	link	on	the	right	of	the	list	of	tabs
tells	you	that	more	tabs	are	available	for	you	to	access.
Not	shown	in	Figure	13-5	is	the	Navigation	pane.	Click	the	right-pointing	arrow	to	show	the
Navigation	pane,	where	you	can	choose	other	DynamoDB	views	(Dashboard	and	Reserved
Capacity).

FIGURE	13-3:	Start	defining	the	characteristics	of	the	table	you	want	to	create.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html

FIGURE	13-4:	Choose	a	sort	key	that	people	will	understand	well.

FIGURE	13-5:	The	table	you	created	appears	in	the	Tables	page.

Developing	a	Basic	Database
The	act	of	creating	a	table	doesn’t	necessarily	mean	that	your	database	is	ready	for	use.	For	one	thing,
even	though	you	have	the	beginnings	of	a	database,	it	lacks	data.	Also,	you	may	need	to	modify	some	of
the	settings	to	make	the	database	suit	your	needs	better.	For	example,	you	may	decide	to	include
additional	alarms	based	on	metrics	that	you	see,	or	to	increase	the	capacity	as	the	test	phase
progresses	and	more	people	work	with	the	data.

Normally,	you	populate	a	database	by	importing	data	into	it.	The	DynamoDB	interface	also	allows	you
to	enter	data	manually,	which	works	quite	well	for	test	purposes.	After	the	data	looks	the	way	you
want	it	to	look,	you	can	export	the	data	to	see	how	the	data	you	want	to	import	should	look.	Exporting
the	data	also	allows	you	to	move	it	to	other	locations	or	perform	a	backup	outside	of	AWS.

	Databases	normally	contain	more	than	one	table,	even	NoSQL	databases.	Yes,	creating	a
simple	test	database	using	a	single	table	is	possible,	but	multiple	tables	appear	more	often	than
not	in	a	database.	The	examples	in	this	chapter	do	rely	on	a	single	table	—	the	one	you	create	in
the	previous	section.	You	use	this	table	in	the	sections	that	follow	to	explore	the	techniques	that
DynamoDB	provides	for	interacting	with	tables	and	the	data	they	contain.

Configuring	tables
The	right	pane	in	Figure	13-5	contains	a	series	of	tabs.	Each	of	these	tabs	gives	you	useful	information
about	the	selected	table.	Because	the	information	is	table	specific,	you	can’t	perform	actions	on	groups
of	tables	using	the	interface.	The	following	sections	discuss	the	essentials	of	working	with	tables.

Working	with	streams
Because	of	the	manner	in	which	NoSQL	tables	work,	you	often	need	to	synchronize	copies	of	the	same
data.	A	table	in	one	region	might	receive	changes	that	you	also	need	to	replicate	in	another	region.	In
fact,	you	might	find	other	reasons	to	provide	a	log	of	changes	(think	of	the	log	as	a	detailed	procedure
you	could	use	to	replicate	the	changes)	to	the	tables	you	create.	A	stream	is	a	record	of	table	changes
(the	actual	data	used	to	modify	the	table,	rather	than	a	procedure	detailing	the	tasks	performed,	as
provided	by	a	log).	Each	change	appears	only	once	in	the	log	you	create,	and	it	appears	in	the	order	in
which	DynamoDB	received	the	change.	The	ordered	list	enables	anyone	reading	the	log	to	reconstruct
table	changes	in	another	location.	AWS	retains	this	log	for	24	hours,	so	it	doesn’t	need	to	be	read
immediately.

The	Overview	tab	contains	a	Manage	Stream	button	in	the	Stream	Details	section	that	you	click	to	set
up	a	stream	for	your	table,	as	shown	in	Figure	13-6.	This	feature	isn’t	enabled	by	default	(Stream
Enabled	will	show	a	value	of	No),	but	you	can	configure	it	to	allow	the	storage	of	specific	change
information.	You	have	the	following	options	when	creating	the	change	log:

Keys	Only:	Just	the	key	portion	of	the	key-value	pair	appears	in	the	log.	This	option	has	the
advantage	of	providing	just	a	summary	of	the	changes	and	makes	the	log	smaller	and	easier	to	read
than	if	both	the	key	and	the	value	appeared.	If	the	receiving	party	wants	to	do	something	with	the

change,	the	new	value	can	be	read	from	the	table.
New	Image:	Both	the	new	key	and	value	of	the	key-value	pair	appear	in	the	log.	The	log	contains
the	information	as	it	appears	after	the	modification.	This	is	the	right	option	to	use	for	replication,	in
that	you	want	to	copy	both	the	new	key	and	value	to	another	table.
Old	Image:	Both	the	old	key	and	the	value	of	the	key-value	pair	appear	in	the	log.	This	log	entry
shows	how	the	table	entry	appeared	before	someone	modified	it.
New	and	Old	Images:	The	entire	new	and	old	key-value	pairs	appear	in	the	log.	You	can	use	this
kind	of	entry	for	verification	purposes.	However,	realize	that	this	approach	uses	the	most	space.
The	log	will	be	much	larger	than	the	actual	table	because	you’re	storing	two	entries	for	absolutely
every	change	made	to	the	table.

FIGURE	13-6:	Use	the	Stream	option	to	create	a	log	of	table	changes.

Viewing	metrics
The	Metrics	tab	contains	a	series	of	graphs,	which	you	can	expand	by	clicking	the	graphs.	Metrics	help
you	understand	how	well	your	table	is	working	and	enable	you	to	change	settings	before	a	particular
issue	becomes	critical.	Many	of	the	metrics	tables	include	multiple	entries.	For	example,	in	the	Read
Capacity	metric,	shown	in	Figure	13-7,	the	red	line	shows	the	provisioned	read	capacity	and	the	blue
line	shows	how	much	of	that	capacity	your	application	consumes.	When	the	blue	line	starts	to
approach	the	red	line,	you	need	to	consider	modifying	the	read	capacity	of	the	table	to	avoid	throttled
read	requests,	which	appear	in	the	metric	to	the	right	of	the	Read	Capacity	metric.

FIGURE	13-7:	Metrics	help	you	manage	your	table.

	The	i	shown	in	the	circle	next	to	a	metric	graph	tells	you	that	you	can	get	additional
information	about	that	graph.	Hover	your	mouse	over	the	i	to	see	a	pop-up	box	containing	helpful
information.	For	example,	the	pop-up	for	the	Read	Capacity	graph	tells	you	that	small	surges	in
reads	may	not	appear	in	the	graph	because	the	graph	uses	averaged	data.	The	Throttled	Read
Requests	graph	is	actually	a	better	indicator	of	when	small	surges	become	a	problem.

Checking	alarms
The	Alarms	tab,	shown	in	Figure	13-8,	contains	the	alarms	that	you	set	to	monitor	your	table.	No	one
can	view	the	status	of	a	table	continuously,	so	alarms	enable	you	to	discover	potentially	problematic
conditions	before	they	cause	an	application	crash	or	too	many	user	delays.	The	default	table	setup
includes	two	alarms:	one	for	read	capacity	and	another	for	write	capacity.

FIGURE	13-8:	Use	alarms	to	monitor	table	performance	when	you	aren’t	physically	viewing	it.

The	options	on	the	Alarms	tab	let	you	create,	delete,	and	edit	alarms.	When	you	click	one	of	these
options,	you	see	a	dialog	box	similar	to	the	one	shown	in	Figure	13-9,	in	which	you	configure	the
alarm.	Sending	a	Simple	Notification	Service	(SNS)	message	lets	you	get	a	remote	warning	of
impending	problems.

FIGURE	13-9:	Create	new	alarms	or	edit	existing	alarms	as	needed	to	keep	tables	working	smoothly.

Modifying	capacity
When	you	initially	create	a	table,	you	get	5	units	each	of	read	and	write	capacity.	As	your	application
usage	grows,	you	might	find	that	these	values	are	too	small	(or	possibly	too	large).	Every	unit	of
capacity	costs	money,	so	tuning	the	capacity	is	important.	The	Capacity	tab,	shown	in	Figure	13-10,

lets	you	modify	the	read	and	write	capacity	values	for	any	table.	You	should	base	the	amounts	you	use
on	the	metrics	discussed	in	the	“Viewing	metrics”	section,	earlier	in	this	chapter.

FIGURE	13-10:	Manage	the	read	and	write	capacity	to	ensure	that	the	application	works	as	anticipated	but	costs	remain	low.

The	tab	shows	an	anticipated	cost	for	the	current	usage	level.	Changing	the	read	or	write	capacity	will
also	modify	the	amount	you	pay.	The	Capacity	Calculator	link	displays	a	Capacity	Calculator	that	you
can	use	to	compute	the	amount	of	read	and	write	capacity	that	you	actually	need,	as	shown	in	Figure
13-11.	Simply	type	the	amounts	into	the	fields	to	obtain	new	read	and	write	capacity	values.	Click
Save	to	transfer	these	values	to	the	Capacity	tab.

FIGURE	13-11:	The	Capacity	Calculator	reduces	the	work	required	to	compute	capacity	values.

Creating	a	secondary	index
Secondary	indexes	make	finding	specific	data	in	your	table	easier.	Perhaps	you	need	to	find
information	based	on	something	other	than	the	primary	key.	For	example,	you	can	find	employees
based	on	name	or	ID	by	using	the	primary	key	for	the	example	table.	However,	at	some	point	you	might
also	need	to	find	employees	based	on	their	employment	date.	To	create	a	secondary	index,	click	Create
Index	in	the	Indexes	tab.	You	see	a	Create	Index	dialog	box	like	the	one	shown	in	Figure	13-12.	(This
dialog	box	contains	sample	values	that	you	can	use	for	experimentation	purposes	in	the	“Performing
Queries”	section,	later	in	this	chapter.)

FIGURE	13-12:	Use	secondary	indexes	to	help	look	for	data	not	found	in	the	primary	key.

A	secondary	index	incurs	an	additional	cost.	You	must	allocate	read	and	write	capacity	units	that
reflect	the	amount	of	usage	that	you	expect	the	secondary	index	to	receive.	As	with	the	table’s	capacity
values,	you	can	click	the	Capacity	Calculator	link	to	display	the	Capacity	Calculator	(shown	in	Figure
13-11)	to	provide	an	estimate	of	the	number	of	units	you	need.

After	you	create	a	new	index,	you	see	it	listed	in	the	Indexes	tab,	as	shown	in	Figure	13-13.	The	Status
field	tells	you	the	current	index	condition.	No	option	exists	for	editing	indexes.	If	you	find	that	the
index	you	created	doesn’t	work	as	anticipated,	you	need	to	delete	the	old	index	and	create	a	new	one.

FIGURE	13-13:	The	Indexes	tab	provides	a	list	of	indexes	for	your	table.

Adding	items
After	you	obtain	the	desired	setup	for	your	table,	you	want	to	add	some	items	to	it.	The	Items	tab,
shown	in	Figure	13-14,	can	look	a	little	daunting	at	first	because	you	can	use	it	in	several	different
ways.	This	section	focuses	on	the	Create	Item	button,	but	you	use	the	other	functions	as	the	chapter
progresses.

FIGURE	13-14:	The	Items	tab	combines	a	number	of	tasks	into	a	single	area.

The	following	sections	describe	how	to	add	items	to	your	table	manually.	You	can	also	add	items	in
bulk	by	importing	them.	Another	option	is	to	copy	a	table	(exporting	data	from	one	table	and	importing
it	into	another)	or	to	use	a	stream	to	obtain	data	from	another	table	(see	the	“Working	with	streams”
section,	earlier	in	this	chapter,	for	details).

Defining	the	data	types
When	you	create	an	item,	you	initially	see	all	the	fields	that	you’ve	defined	in	various	ways,	but	that
isn’t	the	end	of	the	process.	You	can	add	more	fields	as	needed	to	provide	a	complete	record.	Index
and	key	fields,	those	that	you	define	using	the	various	methods	found	in	this	chapter,	have	a	limited
number	of	acceptable	data	types:	String,	Binary,	and	Number.	However,	other	fields	can	use	these	data
types:

String:	A	series	of	characters	that	can	include	letters,	numbers,	punctuation	marks,	and	special
characters.
Binary:	A	series	of	0s	and	1s	presented	as	Base64-encoded	binary	data.	DynamoDB	treats	every
value	in	the	string	as	an	individual,	byte-coded	value	but	stores	the	entire	string	as	a	single	value	in
the	table.
Number:	Any	number	that	you	could	expect	to	find	in	other	programming	languages.	You	specify	a
number	as	a	string	but	don’t	care	whether	the	number	is	an	integer	or	floating-point	value.
DynamoDB	treats	the	strings	you	provide	as	numbers	for	math	calculations.

StringSet:	A	group	of	strings	that	work	together	as	an	array	of	values.	Every	value	in	the	array
must	appear	as	a	string.	The	array	can	have	as	many	strings	as	needed	to	complete	the	information.
For	example,	you	can	create	a	StringSet	called	Address.	Each	entry	can	be	another	line	in	an
individual’s	address,	which	means	that	some	entries	may	have	just	one	entry,	while	others	may
have	two	or	three	entries	in	the	array.
NumberSet:	A	group	of	numeric	strings	that	work	together	as	an	array	of	numeric	values.	Every
value	in	the	array	must	appear	as	a	number,	but	not	necessarily	all	as	integers	or	floating-point
values.	DynamoDB	treats	the	strings	you	provide	as	numbers	for	math	calculations.
BinarySet:	A	group	of	binary	values	that	work	together	as	an	array	of	values.	Every	value	in	the
array	must	appear	as	a	binary	value.
Map:	A	complex	data	grouping	that	contains	entries	of	any	data	type,	including	other	maps.	The
entries	appear	as	attribute-value	pairs.	You	provide	the	name	of	an	attribute	and	then	supply	a
value	that	contains	any	of	the	data	types	described	in	this	section.	You	can	access	each	member	of
the	map	using	its	attribute	name.
List:	A	group	of	data	of	any	supported	DynamoDB	type.	A	list	works	similarly	to	a	set	but	with
elements	that	can	be	of	any	type.	A	list	can	even	contain	maps.	The	difference	between	a	list	and	a
map	is	that	you	don’t	name	the	individual	entries.	Consequently,	you	access	members	of	a	list	using
an	index	(a	numeric	value	that	indicates	the	item’s	position	in	the	list,	starting	with	0	for	the	first
item).
Boolean:	A	value	of	either	true	or	false	that	indicates	the	truth	value	of	the	attribute.
Null:	A	blank	spot	that	is	always	set	to	true.	You	use	a	Null	attribute	to	represent	missing	data.
Other	records	in	the	table	contain	this	data,	but	the	data	is	missing	for	this	particular	record.

Creating	an	item
To	create	a	new	item	for	your	table,	click	Create	Item	in	the	Items	tab.	You	see	a	dialog	box	like	the
one	shown	in	Figure	13-15.	This	dialog	box	automatically	presents	three	attributes	(fields).	These
fields	are	present	because	they	represent	required	entries	to	support	a	primary	key,	sort	key,	or
secondary	index.

FIGURE	13-15:	Creating	a	new	item	automatically	adds	the	required	attributes	for	that	item.

	The	items	you	see	when	you	first	create	an	item	are	mandatory	if	you	want	the	item	to	work	as
it	should	with	other	table	items.	However,	you	can	remove	the	items	if	desired,	which	can	lead	to
missing	essential	data	in	the	table.	DynamoDB	does	check	for	missing	or	duplicate	key	values,	so
you	can’t	accidentally	enter	two	items	with	the	same	key.

When	you	finish	filling	out	the	essential	attributes,	you	can	save	the	item	(if	desired)	by	clicking	Save.
DynamoDB	checks	the	item	for	errors	and	saves	it	to	your	table.	You	have	the	option	of	adding	other
attributes,	as	covered	in	the	next	section.

Adding	and	removing	attributes
Table	items	have	key	fields,	sort	fields,	and	secondary	sort	indexes	that	provide	essential	information
to	both	the	viewer	and	DynamoDB.	These	entries	let	you	perform	tasks	such	as	sorting	the	data	and
looking	for	specific	information.	However,	there	are	also	informational	fields	that	simply	contain	data.
You	don’t	normally	sort	on	these	attributes	or	use	them	for	queries,	but	you	can	use	them	to	obtain
supplementary	information.	To	add	one	of	these	items,	you	click	the	plus	(+)	sign	next	to	an	existing
item	and	choose	an	action	from	the	context	menu,	shown	in	Figure	13-16.

FIGURE	13-16:	Choose	an	action	to	add	or	remove	attributes	from	an	item.

	Appending	an	attribute	means	adding	it	after	the	current	attribute.	Likewise,	inserting	an
attribute	means	adding	it	before	the	current	attribute.	You	can	also	use	the	menu	to	remove	an
attribute	that	you	don’t	want.	Use	this	feature	with	care,	because	you	can	remove	attributes	that
you	really	need.

After	you	decide	to	append	or	insert	a	new	attribute,	you	choose	an	attribute	type	that	appears	from	the
drop-down	list.	The	“Defining	the	data	types”	section,	earlier	in	this	chapter,	describes	all	the	types.
Click	a	type	and	you	see	a	new	attribute	added	in	the	correct	position.	Begin	defining	the	new	attribute
by	giving	it	a	name.	When	working	with	a	simple	item,	you	type	the	value	immediately	after	the	name,
as	shown	in	Figure	13-17.	If	you	type	an	incorrect	value,	such	as	when	providing	a	string	for	a
Boolean	attribute,	DynamoDB	lets	you	know	about	the	problem	immediately.

FIGURE	13-17:	Attributes	appear	as	attribute-value	pairs.

Adding	complex	attributes	take	a	little	more	time	and	thought.	Figure	13-18	shows	a	map	entry.	Note
how	the	attribute-value	pairs	appear	indented.	If	this	map	had	contained	other	complex	types,	such	as	a
set,	list,	or	map,	the	new	data	would	appear	indented	at	another	level	to	the	right.	The	map
automatically	keeps	track	of	the	number	of	map	entries	for	you.

FIGURE	13-18:	Complex	data	appears	as	indented	entries.

It	isn’t	apparent	from	the	figure,	but	you	use	a	slightly	different	technique	to	work	with	attributes	in	this
case.	When	you	want	to	add	a	new	attribute,	one	that’s	at	the	same	level	as	the	map,	you	actually	click
the	plus	sign	(+)	next	to	the	map	entry,	which	is	Address	in	Figure	13-18.	However,	if	you	want	to	add
a	new	entry	to	the	map,	you	must	click	the	+	next	to	one	of	the	map	entries,	such	as	Address1.

Modifying	items
Several	methods	are	available	for	modifying	items.	If	you	want	to	modify	all	or	most	of	the	entries	in
the	item,	select	the	item’s	entry	in	the	list	and	choose	Actions     Edit.	You	see	a	dialog	box,	similar	to
the	one	shown	in	Figure	13-18,	in	which	you	can	edit	the	information	as	needed.	(If	the	information
appears	with	just	the	complex	data	shown,	click	the	Expand	All	Fields	button	at	the	top	of	the	dialog
box.)

To	modify	just	one	or	two	attributes	of	an	item,	hover	your	mouse	over	that	item’s	entry	in	the	Items
tab.	Attributes	that	you	can	change	appear	with	a	pencil	next	to	them	when	you	have	the	mouse	in	the
correct	position.	Click	the	pencil	icon,	and	you	can	enter	new	information	for	the	selected	attribute.

Copying	items
You	may	have	two	items	with	almost	the	same	information,	or	you	might	want	to	use	one	of	the	items	as
a	template	for	creating	other	items.	You	don’t	need	to	perform	this	task	manually.	Select	the	item	you
want	to	copy	and	choose	Actions     Duplicate	in	the	Items	tab.	You	see	a	Copy	Item	dialog	box	that
looks	similar	to	the	dialog	box	shown	in	Figure	13-18.	Change	the	attributes	that	you	need	to	change
(especially	the	primary	key,	sort	key,	and	secondary	indexes)	and	click	Save	to	create	the	new	item.
This	approach	is	far	faster	than	duplicating	everything	manually	each	time	you	want	to	create	a	new
item,	especially	when	you	have	complex	data	entries	to	work	with.

Deleting	items
To	remove	one	or	more	items	from	the	table,	select	each	item	that	you	want	to	remove	and	then	choose
Actions     Delete.	DynamoDB	displays	a	Delete	Items	dialog	box,	which	asks	whether	you’re	sure
about	removing	the	data.	Click	Delete	to	complete	the	task.

Deleting	a	table
At	some	point,	you	may	not	want	your	table	any	longer.	To	remove	the	table	from	DynamoDB,	select
the	name	of	the	table	you	want	to	remove	and	then	choose	Actions     Delete	Table	in	the	Tables	page.
DynamoDB	displays	a	Delete	Table	dialog	box	that	asks	whether	you’re	sure	you	want	to	delete	the
table.	Click	Delete	to	complete	the	action.

As	part	of	the	table	deletion	process,	you	can	also	delete	all	the	alarms	associated	with	the	table.
DynamoDB	selects	the	Delete	All	CloudWatch	Alarms	for	this	Table	entry	in	the	Delete	Table	dialog
box	by	default.	If	you	decide	that	you	want	to	keep	the	alarms,	you	can	always	deselect	the	check	box
to	maintain	them.

Performing	Queries
CRUD	involves	creating,	reading,	updating,	and	deleting	data	items.	However,	the	task	that	users
perform	the	most	is	reading	the	data.	Of	course,	you	could	read	the	entire	database,	but	that	wouldn’t
be	time	efficient,	especially	when	you	need	just	one	entry.	That’s	where	queries	come	into	play.	A

query	makes	accessing	a	subset	of	the	entries	possible	without	manually	reading	them	all.	The
following	sections	detail	several	methods	for	performing	queries	against	a	DynamoDB	database.

Using	the	console
Finding	data	that	you	need	can	become	problematic.	A	few	records,	or	even	a	few	hundred	records,
might	not	prove	to	be	much	of	a	problem.	However,	hundreds	of	thousands	of	records	would	be	a
nightmare	to	search	individually,	so	you	need	to	have	some	method	of	finding	the	data	quickly.	This
assistance	comes	in	the	form	of	a	query.	DynamoDB	actually	supports	two	query	types:

Scan:	Uses	a	filtering	approach	to	find	entries	that	match	your	criteria.
Query:	Looks	for	specific	attribute	entries.

The	examples	in	this	section	employ	two	test	entries	in	the	TestDB	table.	The	essential	entries	are	the
EmployeeID,	EmployeeName,	and	EmploymentDate	attributes,	shown	here:

EmployeeID EmployeeName EmploymentDate

1234 Jan	Smythe 05/31/2017

1235 Hal	Jones 02/28/2015

The	two	methods	of	querying	data	have	advantages	and	disadvantages,	but	what	you	use	normally
comes	down	to	a	matter	of	personal	preference.	The	following	sections	describe	both	approaches.

Using	a	scan
Scans	have	the	advantage	of	being	a	bit	more	free-form	than	queries.	You	filter	data	based	on	any	field
you	want	to	use.	To	scan	the	data,	you	choose	either	a	[Table]	entry	that	contains	the	primary	key	and
sort	key,	or	an	[Index]	entry	that	sorts	the	data	based	on	a	secondary	index	that	you	create,	as	shown	in
Figure	13-19.

FIGURE	13-19:	Scans	employ	filters	to	locate	data.

Using	a	scan	means	deciding	on	what	kind	of	filtering	to	use	to	get	a	desired	result.	The	following
steps	give	you	a	template	for	a	quick	method	of	performing	a	scan.	(Your	steps	will	vary	because	you
need	to	provide	specific	information	to	make	the	procedure	work.)

1.	 Choose	Scan	in	the	first	field.
2.	 Select	either	a	[Table]	or	[Index]	entry	in	the	second	field.

The	entry	you	choose	determines	the	output’s	sort	order.	In	addition,	using	the	correct	entry	speeds
the	search	because	DynamoDB	will	have	a	quick	method	of	finding	the	data.

3.	 Click	Add	Filter	(if	necessary)	to	add	a	new	filter	entry.
You	can	remove	filters	by	clicking	the	X	on	the	right	side	of	the	filter’s	entry.

4.	 Choose	an	attribute,	such	as	in	the	first	Filter	field.
5.	 Select	the	attribute’s	type	in	the	second	Filter	field.
6.	 Specify	a	logical	relationship	in	the	third	Filter	field.

This	entry	can	be	tricky,	especially	when	working	with	strings.	For	example,	if	you	want	to	find	all
the	entries	that	begin	with	the	name	George,	you	choose	the	Begins	With	entry	in	this	field.
However,	if	you	want	to	find	all	the	employees	hired	after	11/08/2016,	use	the	>	entry	instead.

7.	 Type	a	value	for	the	fourth	Filter	field,	such	as	George.
8.	 Click	Start	Search.

You	see	the	entries	that	match	your	filter	criteria.	You	can	use	as	many	filters	as	desired	to	whittle
the	data	down	to	just	those	items	you	really	want	to	see.	Simply	repeat	Steps	3	through	8	to	achieve
the	desired	result.

Using	a	query
Queries	are	stricter	and	more	precise	than	scans.	When	you	perform	a	query,	you	look	for	specific
values,	as	shown	in	Figure	13-20.	Notice	that	the	key	value	is	precise.	You	can’t	look	for	a	range	of
employment	dates;	instead,	you	must	look	for	a	specific	employment	date.	In	addition,	the	employment
date	is	a	mandatory	entry;	you	can’t	perform	the	query	without	it.	However,	you	can	also	choose	an
optional	sort	key	and	add	filtering	(as	found	with	scans)	as	well.

FIGURE	13-20:	Queries	use	specific	values	to	find	information.

Using	a	query	is	like	asking	a	specific	question.	You	can	ask	which	employees,	who	were	hired	on
02/28/2015,	have	a	name	that	begins	with	Hal.	In	this	case,	you	see	just	one	record.	Scans	can	produce

the	same	result	by	employing	multiple	filters.	The	advantage	of	a	query	is	that	it	forces	you	to	think	in	a
particular	way;	also,	because	you	use	attributes	that	are	indexed,	using	a	query	is	faster	than	a	scan.

Querying	the	database	programmatically
As	with	the	console,	you	can	perform	both	scans	and	queries	using	languages	such	as	Python.	Using	the
console	actually	helps	you	understand	what	you	need	to	provide	in	order	to	obtain	the	correct	results.
The	following	code	demonstrates	both	a	scan	and	a	query.	You	can	access	the	example	code	for	this
chapter	in	the	AWS4D4D;	13,	Scans	and	Queries.ipynb	file	in	the	downloadable	source,	as
explained	in	the	Introduction.

import	boto3

client	=	boto3.client('dynamodb')

	

result	=	client.scan(

				TableName	=	'TestDB',

				ScanFilter	=

				{

								'EmployeeName':

								{

												'AttributeValueList':

												[

																{

																				'S':	'Jan	Smythe'

																}

],

												'ComparisonOperator':	'EQ'

								}

				})

	

for	item	in	result['Items']:

				print(

				'Employee	ID:	',	item['EmployeeID']['N'],

				'\nEmployee	Name:	',	item['EmployeeName']['S'])

	

result	=	client.query(

				TableName	=	'TestDB',

				KeyConditions	=

				{

								'EmployeeID':

								{

												'AttributeValueList':

												[

																{

																				'N':	'1234'

																}

],

												'ComparisonOperator':	'EQ'

								}

				})

	

for	item	in	result['Items']:

				print(

				'Employee	ID:	',	item['EmployeeID']['N'],

				'\nEmployee	Name:	',	item['EmployeeName']['S'])

The	client.scan()	function	doesn’t	require	any	input	except	TableName.	The	ScanFilter	argument
is	optional.	On	the	other	hand,	client.query()	does	require	both	TableName	and	KeyConditions.
In	both	cases,	you	must	supply	the	data	type	and	value	of	the	conditions,	plus	a	ComparisonOperator
used	to	interpret	the	input.	The	output	of	both	the	scan	and	the	query	is

Employee	ID:		1234

Employee	Name:		Jan	Smythe

Part	5

The	Part	of	Tens

IN	THIS	PART	…
Discover	methods	for	creating	AWS	applications	quickly.

Get	developer	tools	that	make	a	difference	to	your	development	success.

Locate	essential	third-party	software	packages.

Chapter	14
Ten	Ways	to	Create	AWS	Applications

Quickly
IN	THIS	CHAPTER

	Using	the	console	and	sample	code
	Learning	from	videos	and	webinars
	Solving	problems	through	alternative	sources

It’s	deadline	time	and	you’ve	been	struggling	to	complete	your	AWS	application	before	the	boss
arrives	to	make	life	interesting.	Fortunately,	you	have	this	chapter	to	help	you	work	faster	(beating	the
deadline	so	that	you	can	just	smile	as	the	boss	walks	by).	Of	course,	you	didn’t	have	to	get	so	close	to
the	deadline	in	the	first	place.	By	using	these	techniques,	you	can	make	AWS	application	development
faster	and	easier.

Working	at	the	Console
The	GUI	is	slow,	the	GUI	is	cumbersome,	the	GUI	is	for	someone	else	—	someone	less	experienced
with	computers	than	you.	Of	course,	you	can	keep	telling	yourself	these	less-than-truthful	memes	or	you
can	come	to	the	decision	that	the	GUI	really	can	help	you	understand	AWS	better.	Sometimes,	the
fastest	way	to	determine	how	to	perform	a	task	using	the	Command	Line	Interface	(CLI)	or	within	a
program	is	to	determine	how	the	console	does	it.	The	console	can	show	you	the	process	that	AWS
prefers	when	performing	certain	tasks.	In	many	cases,	going	through	the	process	and	keeping	notes	can
help	you	write	applications	that	work	much	faster	than	a	trial-and-error	approach.

Another	reason	to	use	the	console	is	to	determine	what	values	AWS	actually	wants.	Many	of	the
examples	in	this	book	have	you	go	to	the	console	to	obtain	a	required	value.	For	example,	trying	to
find	the	Amazon	Resource	Number	(ARN)	for	an	object	can	prove	nearly	impossible	when	using	CLI
or	code,	but	finding	it	in	the	console	is	usually	quite	easy.	Rather	than	spend	an	afternoon	fiddling	with
code	to	retrieve	an	ARN,	you	can	simply	hard	code	it	while	working	through	the	specifics	of	the
application.	Later	you	can	work	through	the	code	required	to	obtain	the	ARN	you	need.

	The	console	also	provides	monitoring,	which	is	possibly	the	most	important	of	the	developer
tools	it	provides.	Monitoring	can	help	you	detect	issues	such	as	code	that	takes	too	long	to
execute.	However,	monitoring	is	important	because	it	also	tells	you	when	your	code	isn’t	at	fault.
When	developing	applications	for	the	cloud,	you	need	to	remember	that	you	have	an	Internet
connection	to	consider,	along	with	AWS.	In	fact,	you	have	a	wealth	of	failure	points	to	consider
that	have	nothing	to	do	with	your	code.	So	instead	of	spending	hours	looking	for	a	problem	that

doesn’t	actually	exist,	you	can	spend	time	monitoring	the	application	to	determine	the	true	origin
of	the	problem.

Using	Example	Source	Code
Most	developers	spend	a	great	deal	of	time	looking	at	other	people’s	code.	It’s	sort	of	like	viewing
your	neighbor’s	sheet	during	a	test	in	school,	except	this	kind	of	cheating	is	perfectly	legal.	In	fact,	it’s
encouraged.	Here	are	a	few	places	you	might	want	to	try	when	looking	for	an	example	that	completely
squashes	that	problem	you’re	having:

AWS	Sample	Code	and	Libraries:	https://aws.amazon.com/code

AWS	Documentation	(check	the	individual	services	and	SDKs):
https://aws.amazon.com/documentation/

GitHub:	https://github.com/search?q=AWS

	You	can	also	find	other	sources	of	example	code.	For	example,	places	such	as	SitePoint
(https://www.sitepoint.com/)	provide	interesting	articles	that	include	a	wealth	of	example
sources	you	can	use.	In	addition,	Amazon	provides	some	living	examples,	through	which	you	can
try	the	example	code	using	a	form	and	then	seeing	the	underlying	source.	One	such	example	is	the
S3	demonstration	at	https://s3.amazonaws.com/doc/s3-example-
code/post/post_sample.html.	The	biggest	problem	with	the	Amazon	examples	is	that	you	can
find	them	everywhere.	You	might	remember	seeing	an	example	at	some	point,	but	it’s	nearly
impossible	to	determine	just	where	unless	you	actually	remember	that	it	did	appear	somewhere	in
the	documentation.

Don’t	forget	to	check	the	documentation	for	any	SDKs	or	add-on	libraries	you	use.	For	example,
Python	developers	will	definitely	want	to	check	the	Boto3	documentation	at
https://boto3.readthedocs.io/en/latest/.	These	sites	often	contain	separate	example
application	sections	that	you	can	use	to	get	started	faster.

Combining	Trial-and-Error	Techniques
This	book	shows	you	at	least	three	different	ways	to	accomplish	most	tasks.	It	might	seem	like	overkill
at	first,	but	sometimes	working	with	AWS	doesn’t	sink	in	by	using	only	one	technique.	The	three	most
common	techniques	you	should	use	to	perform	trial-and-error	methods	when	discovering	a	new	way	to
interact	with	AWS	are

Use	the	consoles
Use	the	CLI
Use	your	own	application	code

It	isn’t	random	chance	that	this	book	relies	on	Anaconda	to	perform	most	programmatic	tasks.	The

https://aws.amazon.com/code
https://aws.amazon.com/documentation/
https://github.com/search?q=AWS
https://www.sitepoint.com/
https://s3.amazonaws.com/doc/s3-example-code/post/post_sample.html
https://boto3.readthedocs.io/en/latest/

combination	of	Python	and	Anaconda	Notebooks	provides	an	exceptionally	friendly	environment	in
which	to	write	code	and	see	what	happens.	Because	the	feedback	is	instantaneous	and	you	can	work	in
a	piecemeal	fashion,	the	Notebook	environment	gives	you	immediate	and	detailed	feedback.	You	don’t
have	to	keep	going	through	the	write   debug   run	cycle	with	Python	—	you	just	write	code	and
execute	it.

Watching	the	Videos
Watching	a	video	and	then	practicing	what	the	video	shows	you	offers	you	two	methods	of	learning	that
have	nothing	to	do	with	the	usual	trial-and-error	coding	techniques.	A	change	of	pace	can	help	you
discover	that	nuanced	technique	that	you	completely	missed	by	using	other	methods.	Every	developer
has	had	the	experience	of	someone	else	checking	code	to	find	a	really	obvious	error	that	the	developer
should	have	seen	but	didn’t.	Videos	work	the	same	way,	giving	you	a	different	perspective	on	the
whole	configuration	and	coding	process	so	that	an	obvious	error	actually	does	become	obvious.

Videos	can	also	provide	a	needed	break	and	a	change	of	pace.	It’s	hardly	surprising	when	you	continue
to	attack	a	problem	using	precisely	the	same	methods	and	continue	to	fail.	There	is	likely	nothing
wrong	with	the	method,	but	you	become	tired	and	stop	thinking	through	the	process	correctly.	You	need
a	different	viewpoint.	With	this	in	mind,	here	are	some	places	to	look	for	AWS	videos	that	help	you	get
a	fresh	start	on	that	problem	you’re	currently	trying	to	solve:

Amazon	Instructional	Videos	and	Labs:
https://aws.amazon.com/training/intro_series/

YouTube	(AWS-specific):	https://www.youtube.com/user/AmazonWebServices

YouTube	(other	sources):	https://www.youtube.com/results?search_query=AWS

FreeVideoLectures:	http://freevideolectures.com/Course/3649/Cloud-Computing/

	You	can	also	find	sites	that	list	video	collections.	For	example,	you	can	find	an	article	on	the
top	100	Amazon	videos	(at	least	in	the	opinion	of	the	author)	on	the	RoboPsychology	site	at
http://meta-guide.com/videography/100-best-amazon-aws-tutorial-videos.	The
most	useful	aspect	of	these	articles	is	that	they	often	supply	clues	as	to	the	quality	and	content	of
the	videos	so	that	you	don’t	have	to	wade	through	hundreds	of	videos	to	find	the	one	you	need.

Attending	the	Webinars
Webinars	involve	attending	a	short	course	without	actually	going	anywhere.	You	get	the	kind	of
instruction	you	might	get	from	a	seminar	but	get	to	be	in	your	usual	comfortable	seat	and	drink	coffee
from	your	own	mug.	For	many	developers,	it’s	pure	heaven	because	they	can	replay	sections	of	the
webinar	as	needed	and	don’t	suffer	the	discomfort	of	going	to	an	unfamiliar	location.	Viewing	a
webinar	can	help	you	learn	new	techniques	that	are	too	complex	for	other	sorts	of	learning,	such	as
videos.	Here	are	some	places	you	can	look	for	AWS	webinars	to	meet	your	every	need:

https://aws.amazon.com/training/intro_series/
https://www.youtube.com/user/AmazonWebServices
https://www.youtube.com/results?search_query=AWS
http://freevideolectures.com/Course/3649/Cloud-Computing/
http://meta-guide.com/videography/100-best-amazon-aws-tutorial-videos

AWS	Monthly	Webinar	Series:	https://aws.amazon.com/about-
aws/events/monthlywebinarseries/

AWS	Monthly	Webinar	Series	Archive:	https://aws.amazon.com/about-
aws/events/monthlywebinarseries/archive/

Events	and	Webinars:	https://aws.amazon.com/about-aws/events/

AWS	Partner	Webinar	Series:	https://aws.amazon.com/webinars/partner-webinar-
series/

AWS	Webinar	YouTube	Channel:	https://www.youtube.com/user/AWSwebinars

	You	can	also	find	webinars	from	other	companies	online.	For	example,	Cloud	Academy
(https://cloudacademy.com/webinars/)	and	OneLogin
(https://www.onelogin.com/resources/webinars)	both	provide	AWS-related	webinars.
However,	these	webinars	require	payment	or	a	subscription.	The	best	option	is	to	go	with	the	free
resources	first	and	then	use	the	paid	resources	if	the	free	resources	don’t	quite	tell	you	everything
you	need	to	know.

Discovering	Others	Efforts
Case	studies	don’t	necessarily	provide	you	with	that	amazing	bit	of	code	you	absolutely	have	to	have
to	complete	your	application,	but	they	can	impart	ideas.	By	the	end	of	most	days,	developers	have
mush	for	brains	because	they’ve	tried	every	idea	—	more	than	once	—	and	sometimes	to	the	point	of
being	absurd.	In	fact,	the	last	few	hours	of	your	workday	might	not	even	prove	productive,	except	in
improving	your	skills	at	Solitaire.	That’s	why	the	case	studies	at
https://aws.amazon.com/websites/	are	so	important.	By	seeing	how	other	developers	deal	with
problems,	you	might	get	some	insights	into	dealing	with	your	own.	Even	in	the	worst-case	scenario,
reading	about	other	people’s	successes	can	help	inspire	you	a	lot	more	than	yet	another	game	of
Solitaire	will.

	One	of	the	most	important	features	of	these	case	studies	is	that	you	see	block	diagrams	of	how
other	developers	have	used	AWS	services	to	create	a	complete	solution.	The	block	diagrams	and
accompanying	discussion	can	help	you	see	new	ways	in	which	to	use	AWS	to	create	a	solution
that	requires	less	coding	and	maintenance	to	create	a	reliable	application.

Depending	on	Peer	Support
Anyone	who	works	with	open	source	products	knows	the	benefits	of	using	peer	support	to	answer	the
tough	questions.	The	same	principle	might	not	seem	to	apply	to	AWS,	but	it	does.	You	can	often	get	just
the	right	answer	from	someone	who	has	already	been	where	you	are	now	through	an	online	peer
resource.	Some	of	the	most	popular	places	to	get	AWS-specific	help	are

https://aws.amazon.com/about-aws/events/monthlywebinarseries/
https://aws.amazon.com/about-aws/events/monthlywebinarseries/archive/
https://aws.amazon.com/about-aws/events/
https://aws.amazon.com/webinars/partner-webinar-series/
https://www.youtube.com/user/AWSwebinars
https://cloudacademy.com/webinars/
https://www.onelogin.com/resources/webinars
https://aws.amazon.com/websites/

Amazon	Developer:	https://developer.amazon.com/support

Quora:	https://www.quora.com/

GitHub:	https://github.com/

	Unfortunately,	peer	support	also	comes	with	a	few	issues.	For	example,	you	don’t	really	know
who	is	on	the	other	end	of	the	line;	it	could	be	a	troll	whose	only	happiness	is	ruining	your	day.	In
addition,	you	can’t	always	trust	that	someone	is	actually	from	Amazon,	even	if	the	email	address
suggests	they	are.	For	that	matter,	even	if	they	are	from	Amazon,	you	don’t	know	that	they’re	an
expert	in	the	problem	that	you	have.	The	point	is	that	you	need	to	exercise	care	when	using	peer
support.	Often,	the	support	really	does	work,	but	all	it	takes	is	one	or	two	instances	when	it
doesn’t	to	cause	you	considerable	woe	in	your	current	development	project.

Working	with	Blogs
Blogs	can	be	helpful	because	many	authors	are	quite	knowledgeable	about	AWS.	A	blog	can	provide
you	with	a	process	for	performing	a	configuration	or	some	special	coding	technique	to	use	with
Lambda.	Blog	posts	can	also	tell	you	about	caveats	and	supply	fixes	that	Amazon	sometimes	buries	on
a	page	that	no	one	visits.

	Realize,	though,	that	although	they	can	be	useful,	blogs	can	also	become	outdated	quite	fast
because	AWS	moves	at	the	speed	of	light.	In	addition,	the	author	might	not	have	as	much
knowledge	as	originally	thought.	Don’t	rely	on	blog	posts	that	are	more	than	a	year	or	so	old
because	AWS	has	likely	changed	in	that	time.	In	addition,	read	the	posts	carefully	to	see	how
much	of	the	information	you	already	know	and	how	well	it	agrees	with	your	knowledge	before
using	the	blog	information	to	go	into	unknown	territory.	With	all	this	in	mind,	here	are	some	blogs
that	you	might	try	when	looking	for	the	ultimate	in	setup	or	coding	techniques:

SearchAWS:	https://developer.amazon.com/support

CloudThat:	https://blog.cloudthat.com/category/aws/

Hacker	Noon:	https://hackernoon.com/tagged/aws

Using	Alternative	Sources
You	can	sometimes	find	answers	in	surprising	places,	and	it	pays	to	look	hard	sometimes	rather	than
waste	days	with	a	problem	someone	else	has	already	solved.	One	of	the	alternative	sources	you	might
try	is	other	vendor	sites.	For	example,	you	can	occasionally	find	useful	information	on	the	MSDN
forums	(https://social.msdn.microsoft.com/Forums/).	Not	long	ago,	a	thread	appeared	on
MSDN	about	running	the	MSDN	subscription	on	AWS	(to	make	accessing	it	everywhere	easier).	Odd
bits	of	information	like	this	can	be	elusive	to	find,	so	don’t	limit	your	search	to	just	one	location;	look

https://developer.amazon.com/support
https://www.quora.com/
https://github.com/
https://developer.amazon.com/support
https://blog.cloudthat.com/category/aws/
https://hackernoon.com/tagged/aws
https://social.msdn.microsoft.com/Forums/

everywhere.

Sites	such	as	SlideShare	(https://www.slideshare.net/)	can	also	prove	excellent	resources.	For
example,	when	considering	the	previous	MSDN	license-hosting	question,	you	can	find	information	on
that	topic	on	SlideShare	at	https://www.slideshare.net/AmazonWebServices/leveraging-
amazon-web-services-to-host-msdn-licenses.	YouTube	(https://www.youtube.com/)	also
offers	a	wealth	of	videos	to	check	out.	Some	of	these	videos	are	listed	at
https://www.youtube.com/results?search_query=AWS.	If	everyone	learned	precisely	the	same
way,	you	wouldn’t	need	to	check	out	these	other	resources,	but	when	you’re	in	a	bind,	looking	into
alternatives	really	does	pay.	Perhaps	a	coding	example	presented	in	the	traditional	way	just	isn’t
enough	to	solve	that	horrifying	problem	that	threatens	your	weekend.

Going	Back	to	Tutorials
This	book	is	one	of	your	main	sources	of	information.	However,	even	as	informative	as	this	book	is,	it
can’t	contain	absolutely	every	piece	of	information	about	AWS	in	every	possible	form.	A	lot	of	people
rely	on	tutorials	to	fill	in	gaps.	Even	the	experts	do	(sometimes,	especially	the	experts).	Tutorials	are
fast	and	often	present	information	in	ways	that	you	wouldn’t	otherwise	consider.	Of	course,	you	have
all	the	Amazon-specific	tutorials	to	consider	as	well.	Every	main	service	page	contains	a	listing	of
tutorials	to	try.	In	addition,	check	out	the	tutorials	at	these	locations:

Amazon	10-Minute	Tutorials:	https://aws.amazon.com/getting-started/tutorials/

AWS	Tutorials:	http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-
intro/gsg-aws-tutorials.html

AWS	Tutorial	Series:	https://www.youtube.com/user/awstutorialseries

Amazon	likely	has	other	tutorials	for	you	to	try,	but	these	locations	give	you	just	about	everything	you
could	ask	for	in	the	way	of	quick	information.	Of	course,	many	third	parties	are	also	involved	with
AWS.	Here	are	some	of	the	more	interesting	sites	to	try:

TutorialsPoint:	https://www.tutorialspoint.com/amazon_web_services/index.htm

Guru99:	http://www.guru99.com/aws-tutorial.html

PluralSight	(free	trial	only):	https://www.pluralsight.com/browse/software-
development/python	and	https://www.pluralsight.com/courses/aws-developer-
introduction-aws-lambda.

	You	can	also	locate	specific	topic	tutorials,	and	you	shouldn’t	discount	them	as	you	search.
For	example,	if	you	really	need	to	learn	more	about	Convolutional	Neural	Networks	(and	who
doesn’t	these	days?),	check	out	the	tutorial	at	http://cs231n.github.io/aws-tutorial/.	A
possibly	less	esoteric	topic	is	machine	learning,	which	you	can	find	at
https://www.analyticsvidhya.com/blog/2016/05/comprehensive-guide-ml-amazon-

web-services-aws/.	Some	tutorials	are	presented	as	combination	blog	posts	and	tutorials

https://www.slideshare.net/
https://www.slideshare.net/AmazonWebServices/leveraging-amazon-web-services-to-host-msdn-licenses
https://www.youtube.com/
https://www.youtube.com/results?search_query=AWS
https://aws.amazon.com/getting-started/tutorials/
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/gsg-aws-tutorials.html
https://www.youtube.com/user/awstutorialseries
https://www.tutorialspoint.com/amazon_web_services/index.htm
http://www.guru99.com/aws-tutorial.html
https://www.pluralsight.com/browse/software-development/python
https://www.pluralsight.com/courses/aws-developer-introduction-aws-lambda
http://cs231n.github.io/aws-tutorial/
https://www.analyticsvidhya.com/blog/2016/05/comprehensive-guide-ml-amazon-web-services-aws/

presented	as	a	series,	such	as	the	one	on	Node.js	at	https://hackernoon.com/tutorial-
creating-and-managing-a-node-js-server-on-aws-part-1-d67367ac5171.	The	point	is
that	you	can	probably	find	a	tutorial	of	the	right	type,	presented	in	the	right	way,	somewhere	on
the	Internet.

https://hackernoon.com/tutorial-creating-and-managing-a-node-js-server-on-aws-part-1-d67367ac5171

Chapter	15
Ten	AWS	Tools	Every	Developer	Needs

IN	THIS	CHAPTER
	Using	the	Amazon	offerings
	Relying	on	third-party	support
	Getting	the	Bitnami	tools
	Using	device	emulators

Tools	take	a	wide	variety	of	forms,	and	you	need	to	consider	them	all	if	you	want	to	make	your	AWS
setup	everything	you	need	it	to	be.	When	asked	about	tools,	many	developers	narrow	their	focus	to	the
development	environment.	They	consider	add-on	libraries	that	make	coding	easier,	or	IDE	add-ons
that	make	the	development	process	faster.	However,	when	working	in	the	cloud,	the	concept	of	a	tool
becomes	much	larger	than	just	the	development	environment.	You	must	also	consider	the	cloud
environment.

	The	cloud	environment	encompasses	quite	a	broad	range	of	potential	tool	candidates.	You
consider	not	only	the	AWS	services	but	also	third-party	entities,	such	as	web	services.	The	cloud
brings	with	it	the	possibility	of	accessing	code,	data,	and	services	from	all	over	the	world	in
ways	that	localized	development	could	never	entertain.	Consequently,	you	may	find	some	of	the
entries	in	this	chapter	a	little	surprising	because	they	most	definitely	won’t	fit	into	the	traditional
IDE	or	programming	language	categories.	In	fact,	given	the	broad	range	of	programming
languages	that	AWS	supports,	covering	programming	language-specific	tools	to	any	depth	in	a
single	chapter	(especially	not	one	that	has	a	ten-entry	limit)	would	be	nearly	impossible.

Obtaining	Additional	Amazon	Offerings
Because	of	the	way	Amazon	has	set	up	its	site,	you	can	easily	miss	those	special	offerings	that	might
make	the	difference	between	an	easy	project	and	a	hair-pulling	one.	The	following	sections	offer	some
Amazon-specific	solutions	that	you	might	not	have	considered.

Enhancing	ASW	services	directly
Many	of	the	AWS	services	give	you	the	means	to	update	their	functionality	directly.	The	update	falls
outside	the	range	of	AWS	configuration.	For	example,	when	working	with	EC2,	you	can	install
localized	programming	languages	and	associated	libraries.	The	additional	functionality	enables	you	to
upload	applications	and	run	those	applications	from	within	EC2.	For	example,	you	can	create	a	custom
web	service	that	runs	like	the	web	services	you	use	locally,	but	have	a	cloud-based	approach	that
makes	them	more	accessible	and	achieve	greater	reliability.

	Of	the	various	services,	EC2	is	the	most	flexible	in	its	capability	to	accept	third-party
enhancements	directly.	Consequently,	EC2	is	the	service	that	you	should	try	working	with	first
when	it	comes	to	adding	functionality	directly.	The	article	at
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/find-software.html	supplies
the	details	on	how	to	locate	new	software	for	your	EC2	setup.	The	article	at
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-software.html	tells
you	how	to	install	the	packages	after	you	find	them.	You	should	try	to	find	and	install	a	package
that	can	prove	useful	in	your	development	efforts,	and	then	experiment	with	it	to	see	what	is
possible	to	address	your	specific	needs.

Employing	Tools	for	Amazon	Web	Services
The	Tools	for	Amazon	Web	services	page	(https://aws.amazon.com/tools/)	offers	a	complete	list
of	all	the	tools	that	Amazon	provides,	not	just	those	that	have	appeared	in	the	book.	This	page	actually
contains	links	to	four	kinds	of	tools	that	you	can	use	to	make	your	development	experience	better:

Developer	tools:	These	tools	all	help	you	develop	applications	in	some	way:	storage,	version
control,	building,	testing,	or	deploying.
SDKs:	Each	SDK	applies	to	a	specific	language,	and	Amazon	supports	most	of	the	popular
languages	used	today.	The	individual	SDK	entries	include	links	that	let	you	install	the	SDK,	see	its
associated	documentation,	and	learn	more	about	what	the	SDK	can	do	for	you.
IDE	toolkits:	Each	toolkit	augments	an	Integrated	Development	Environment	(IDE)	regardless	of
language	used.	The	two	IDEs	supported	now	are	Eclipse	and	Visual	Studio	(both	of	which	support
multiple	languages),	but	you	may	see	more	IDEs	in	the	future.	As	with	SDKs,	the	IDE	entries
include	links	that	let	you	install	the	extended	support,	see	its	associated	documentation,	and	learn
more	about	what	the	toolkit	can	do	for	you.
Command-line	tools:	This	book	concentrates	on	using	the	standard	Command	Line	Interface	(CLI)
tools	because	most	platforms	support	these	tools.	Amazon	also	provides	support	for	Windows
PowerShell.	As	with	SDKs,	the	command	line	tool	entries	include	links	that	let	you	install	the
extended	support,	see	its	associated	documentation,	and	learn	more	about	what	the	command-line
tools	can	do	for	you.

Wandering	through	Amazon	Marketplace
Amazon	Marketplace	(https://aws.amazon.com/marketplace/b/2649276011)	helps	you	locate
third-party	tools	that	you	need	based	on	search	criteria	you	provide.	As	shown	in	Figure	15-1,	you
have	a	lot	of	choices	to	make	in	the	Amazon	Marketplace.	Some	of	the	choices	aren’t	apparent	unless
you	spend	time	playing	with	the	interface.	For	example,	you	can	choose	between	AMI	&	SaaS	(as
shown	in	the	figure)	or	Desktop	in	the	search	field.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/find-software.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/install-software.html
https://aws.amazon.com/tools/
https://aws.amazon.com/marketplace/b/2649276011

FIGURE	15-1:	Amazon	Marketplace	gives	you	many	choices.

The	search	filters	also	offer	a	great	many	choices.	You	can	choose	the	software	category,	operating
system,	pricing	plan,	support	type,	free	trial	offering,	delivery	method,	average	rating,	architecture
(32-bit	or	64-bit),	region,	and	instance	type.	The	software	descriptions	also	provide	you	with	the
vendor	name,	product	name,	rating,	version	number,	description,	and	all	sorts	of	other	useful
information.	Click	one	of	the	product	links	and	you	see	even	more	information	about	that	product,	plus
links	to	perform	tasks	such	as	downloading	the	software,	when	the	option	is	available.

	If	the	page	shown	in	Figure	15-1	seems	a	little	daunting,	you	can	always	try	the	Amazon
Marketplace	home	page	(https://aws.amazon.com/marketplace).	This	page	offers	a	gentler
interface	that	lets	you	choose	from	the	most	popular	offerings.	In	other	words,	Amazon	offers	to
filter	some	of	the	options	for	you.

Getting	Amazon-supported	peer	help
Amazon	provides	a	wealth	of	forums	on	which	you	can	ask	for	peer	support	with	your	AWS-specific
issue.	You	can	find	a	list	of	these	forums	at	https://forums.aws.amazon.com/index.jspa.	Many
of	the	forums	give	language-specific	support.	In	addition,	Amazon	developers	do	sometimes	visit	the
forums	to	offer	additional	help	beyond	that	normally	offered	by	peers.	Obviously,	the	level	of	support,
even	with	Amazon	employee	help,	doesn’t	quite	match	the	paid	support	option	at
https://aws.amazon.com/premiumsupport/.

https://aws.amazon.com/marketplace
https://forums.aws.amazon.com/index.jspa
https://aws.amazon.com/premiumsupport/

	Fortunately,	you	don’t	have	to	deal	with	English-only	peer	support.	The	Amazon	forums
support	the	Japanese,	German,	Portuguese,	and	Korean	languages	as	well.	You	also	have	the
option	to	review	feeds	using	RSS,	so	you	can	keep	up	with	what	other	developers	are	asking
about	as	well	(finding	the	answer	that	you	need	before	you	actually	need	it).

Partnering	with	a	Third	Party
You	may	decide	to	employ	the	shortcut	of	partnering	with	a	third	party	to	get	your	application	up	and
running	faster.	The	partner	brings	expertise	to	your	organization	that	takes	considerable	time	and	effort
to	build.

The	AWS	Partner	Programs	page	at	https://aws.amazon.com/partners/programs/	describes	the
long	list	of	partner	types,	any	of	which	could	be	helpful	to	your	development	effort.	However,	the	most
useful	developer	options	appear	in	the	Technology	Partner	Programs	location	on	the	page.	For
example,	members	of	the	AWS	SaaS	Partner	Program	(https://aws.amazon.com/partners/saas/)
help	you	build,	launch,	and	grow	your	application	—	allowing	you	to	better	focus	on	getting	a	working
application	put	together.

	You	may	decide	that	a	technique,	process,	tool,	or	application	that	you	develop	is	generalized
and	useful	enough	to	sell	to	others.	If	this	is	the	case,	you	may	want	to	become	an	Amazon	partner.
The	details	appear	on	the	main	partner	page	at	https://aws.amazon.com/partners/.	Amazon
actively	supports	developers	who	create	solutions	in	a	broad	range	of	categories.

Developing	New	Knowledge
Knowledge	is	power.	If	you	want	to	power	your	way	through	the	various	issues	you	face	when
working	through	code,	you	need	to	find	the	knowledge	that	other	developers	already	possess.	After	all,
you	may	not	know	that	certain	tools	exist,	that	they	have	certain	features	that	you	need,	or	that	you	can
use	them	in	unexpected	ways.	All	these	sorts	of	knowledge	require	that	you	either	experiment	to	obtain
the	information	on	your	own	or	get	it	from	someone	else.	The	following	sections	assume	that	you	want
to	go	the	fast	route	and	get	it	from	someone	else.

Getting	an	education
Going	to	school,	which	is	essentially	what	taking	any	kind	of	course	amounts	to,	won’t	answer	any
immediate	questions	or	help	you	use	the	tools	better	today.	However,	taking	a	course	will	help	you
over	the	long	term	to	develop	a	better	grasp	of	precisely	how	AWS	works	and	how	to	employ	various
tools	to	make	your	development	tasks	easier.	Third-party	sites,	such	as	Linux	Academy
(https://linuxacademy.com/amazon-web-services/courses),	enable	you	to	get	the	education
you	need	quickly	and	easily.	Interestingly	enough,	you	can	even	take	a	course	on	AWS	Developer
Tools	at	https://linuxacademy.com/amazon-web-services/training/course/name/manage-

https://aws.amazon.com/partners/programs/
https://aws.amazon.com/partners/saas/
https://aws.amazon.com/partners/
https://linuxacademy.com/amazon-web-services/courses
https://linuxacademy.com/amazon-web-services/training/course/name/manage-and-deploy-code-with-aws-developer-tools

and-deploy-code-with-aws-developer-tools.

When	looking	for	an	online	course,	make	sure	you	choose	sites	that	offer	multiple	methods	of	learning
the	material.	Otherwise,	you	might	find	THAT	the	one	learning	method	offered	by	a	site	doesn’t	help
you	much.	Sites	that	contain	the	following	types	of	educational	experiences	tend	to	work	best
(obviously,	some	types	of	offerings,	such	as	instructor-led	training,	cost	more):

Videos
Hands-on	labs
Downloadable	source	code
Sample	tests
Slide	shows
Text-based	training
Instructor-led	training

Locating	online	blogs	and	note	sources
A	number	of	online	sites	provide	an	interesting	sort	of	information	source,	notes.	For	example,
Compute	Patterns	(http://www.computepatterns.com/aws-notes/)	is	a	site	that	specializes	in
putting	out	bite-sized	pieces	of	information	that	you	can	easily	consume	and	then	get	right	back	to
work.

Some	blogs	are	also	specialized	and	offer	content	in	short	bits.	For	example,	the	AWS	Startup
Collection	(https://medium.com/aws-activate-startup-blog)	presents	this	sort	of	information.

If	you	want	to	find	an	ultimate	source	of	AWS	blog	posts	on	every	subject	imaginable,	check	out	the
AWS	Labs	site	at	https://github.com/awslabs/.	This	is	actually	a	good	place	to	discover	what
Amazon	has	in	mind	for	the	future.	You	can	use	these	various	information	sources	to	get	up	and	running
quickly	without	having	to	waste	time	in	classes	when	you	need	just	one	answer.

One	of	the	more	interesting	blog	entries	you	can	find	online	is	Chef	Supermarket.	The	cookbooks	you
find	here	(https://supermarket.chef.io/cookbooks/)	give	instructions	for	performing	various
tasks	in	an	extremely	terse	but	efficient	manner.	For	example,	check	out	the	AWS	developer	tools	post
at	https://supermarket.chef.io/cookbooks/aws_developer_tools.

Rely	on	an	information	repository
A	few	sites	online	contain	repositories	of	information.	One	such	site	is	the	StratoScale	wiki	at
http://www.stratoscale.com/wiki/display/privatecloud/Amazon+Web+Services.	The	site
categorizes	various	repositories	for	you,	and	the	developer-related	posts	generally	appear	in	the
Operations	and	Management	category	at
http://www.stratoscale.com/wiki/display/privatecloud/AWS+Operations+and+Management

For	example,	check	out	the	listing	of	AWS	APIs,	SDKs,	and	Developer	Tools	at
http://www.stratoscale.com/wiki/display/privatecloud/AWS+APIs%2C+SDKs+and+Developer+Tools

http://www.computepatterns.com/aws-notes/
https://medium.com/aws-activate-startup-blog
https://github.com/awslabs/
https://supermarket.chef.io/cookbooks/
https://supermarket.chef.io/cookbooks/aws_developer_tools
http://www.stratoscale.com/wiki/display/privatecloud/Amazon+Web+Services
http://www.stratoscale.com/wiki/display/privatecloud/AWS+Operations+and+Management
http://www.stratoscale.com/wiki/display/privatecloud/AWS+APIs%2C+SDKs+and+Developer+Tools

	A	potential	down	side	of	using	repositories	is	that	some	links	do	become	outdated,	so	you
need	to	exercise	care	in	believing	everything	you	read.	However,	repositories	can	also	save
considerable	time	trying	to	research	a	topic	on	your	own.	You	don’t	have	to	dig	through	every
available	link	that	turns	up	when	you	Google	a	topic	because	a	repository	does	the	heavy	lifting
for	you.

Using	Bitnami	Developer	Tools-
Going	to	the	Bitnami	site	(https://bitnami.com/stacks/developer-tools)	is	a	bit	like	going	to	a
candy	store.	You	like	everything	you	see	and	have	no	idea	what	to	pick	first.	The	Bitnami	site
(https://bitnami.com/)	acts	as	a	library	for	server-based	software	of	all	sorts,	not	just	developer
tools.	In	fact,	you	can	find	just	about	anything	you	can	imagine	and	more	than	a	few	things	that	you
didn’t	know	existed.	The	site	can	seem	overwhelming,	but	using	the	stacks	entries
(https://bitnami.com/stacks)	makes	it	easier	to	manage.

	Keep	your	eyes	on	the	Coming	Soon	area	at	the	bottom	of	each	page.	These	entries	appear	on
the	Bitnami	wish	list.	However,	Bitnami	can’t	implement	all	of	them	at	the	same	time	—	the	list	is
just	too	long.	Consequently,	you	can	click	your	favorite	applications	in	this	area	to	cast	your	vote
for	the	applications	that	Bitnami	adds	next.

Relying	on	Device	Emulators
In	all	the	discussions	you	read,	most	of	them	leave	out	one	essential	fact:	You	can’t	see	how	your
application	works	on	other	devices	unless	you	own	those	devices	or	rely	on	an	emulator.	You
definitely	won’t	own	all	the	devices	that	your	users	employ	unless	you	have	a	vault	of	money	stashed
somewhere,	so	the	emulator	route	is	the	one	that	most	developers	use.	Taking	the	shotgun	approach	to
emulators	isn’t	a	good	idea,	either,	because	trying	to	test	your	application	against	every	emulator	out
there	just	won’t	work.	Here	are	some	tips	for	working	with	emulators:

Obtain	a	list	of	devices	that	your	users	actually	have.
Categorize	the	devices	so	that	you	can	create	a	reasonable	list	of	useful	emulators.
Locate	well-supported	emulators	(those	that	have	support	plans)	when	you	can.
Use	the	version	of	the	device	that	most	of	your	users	have,	rather	than	the	newest	version.
Upgrade	your	emulator	test	suite	as	user	choices	change	(which	entails	performing	surveys
regularly).
Avoid	using	emulators	that	simply	check	for	application	parameters	and	functionality;	you	want	to
see	how	the	application	will	look.

https://bitnami.com/stacks/developer-tools
https://bitnami.com/
https://bitnami.com/stacks

About	the	Author
John	Mueller	is	a	freelance	author	and	technical	editor.	He	has	writing	in	his	blood,	having	produced
103	books	and	more	than	600	articles	to	date.	The	topics	range	from	networking	to	artificial
intelligence	and	from	database	management	to	heads-down	programming.	Some	of	his	current	works
include	a	book	about	machine	learning,	a	couple	of	Python	books,	and	a	book	about	MATLAB.	He	has
also	written	AWS	For	Admins	For	Dummies,	which	provides	administrators	a	great	place	to	start	with
AWS.	His	technical	editing	skills	have	helped	more	than	63	authors	refine	the	content	of	their
manuscripts.	John	has	provided	technical	editing	services	to	both	Data	Based	Advisor	and	Coast
Compute	magazines.	John	has	had	an	interest	in	Amazon	Web	Services	(AWS)	since	its	inception.	In
fact,	he	wrote	Mining	Amazon	Web	Services	based	on	that	humble	beginning.	AWS	has	come	a	long
way	since	that	time.	Be	sure	to	read	John’s	blog	at	http://blog.johnmuellerbooks.com/.

When	John	isn’t	working	at	the	computer,	you	can	find	him	outside	in	the	garden,	cutting	wood,	or
generally	enjoying	nature.	John	also	likes	making	wine,	baking	cookies,	and	knitting.	When	not
occupied	with	anything	else,	he	makes	glycerin	soap	and	candles,	which	come	in	handy	for	gift
baskets.	You	can	reach	John	on	the	Internet	at	John@JohnMuellerBooks.com.	John	is	also	setting	up	a
website	at	http://www.johnmuellerbooks.com/.	Feel	free	to	take	a	look	and	make	suggestions	on
how	he	can	improve	it.

http://blog.johnmuellerbooks.com/
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com/

Dedication
Every	day	I	look	around	and	see	unacknowledged	heroes	everywhere	—	all	those	people,	from
farmers,	to	librarians,	to	the	teller	at	the	bank,	who	never	seem	to	receive	thanks	for	their	contribution
to	making	my	writing	possible.	This	book	is	dedicated	to	them.	Even	if	I	don’t	always	say	it,	I	do
appreciate	all	the	hard	work	others	put	in	to	make	life	possible	and	happy.

Acknowledgments
Thanks	to	my	wife,	Rebecca.	Even	though	she	is	gone	now,	her	spirit	is	in	every	book	I	write,	in	every
word	that	appears	on	the	page.	She	believed	in	me	when	no	one	else	would.

Russ	Mullen	deserves	thanks	for	his	technical	edit	of	this	book.	He	greatly	added	to	the	accuracy	and
depth	of	the	material	you	see	here.	Russ	worked	exceptionally	hard	helping	with	the	research	for	this
book	by	locating	hard-to-find	URLs	and	also	offering	a	lot	of	suggestions.	This	was	also	an	especially
difficult	book	from	a	testing	perspective,	and	Russ	was	there	to	help	me	try	various	methods	to	obtain
specific	goals.

Matt	Wagner,	my	agent,	deserves	credit	for	helping	me	get	the	contract	in	the	first	place	and	taking	care
of	all	the	details	that	most	authors	don’t	really	consider.	I	always	appreciate	his	assistance.	It’s	good	to
know	that	someone	wants	to	help.

A	number	of	people	read	all	or	part	of	this	book	to	help	me	refine	the	approach,	test	scripts,	and
generally	provide	input	that	all	readers	wish	they	could	have.	These	unpaid	volunteers	helped	in	ways
too	numerous	to	mention	here.	I	especially	appreciate	the	efforts	of	Eva	Beattie	and	Luca	Massaron,
who	provided	general	input,	read	the	entire	book,	and	selflessly	devoted	themselves	to	this	project.

Finally,	I	would	like	to	thank	Katie	Mohr,	Susan	Christophersen,	and	the	rest	of	the	editorial	and
production	staff	for	their	unparalleled	support	of	this	writing	effort.

Publisher’s	Acknowledgments
Acquisitions	Editor:	Katie	Mohr

Project	and	Copy	Editor:	Susan	Christophersen

Technical	Editor:	Russ	Mullen

Sr.	Editorial	Assistant:	Cherie	Case

Production	Editor:	Vasanth	Koilraj

Cover	Image:	©	PowerUp/Shutterstock

Take	Dummies	with	you	everywhere	you	go!

Go	to	our	Website

Like	us	on	Facebook

Follow	us	on	Twitter

Watch	us	on	YouTube

Join	us	on	LinkedIn

Pin	us	on	Pinterest

Circle	us	on	google+

Subscribe	to	our	newsletter

http://www.dummies.com
http://www.dummies.com
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/
https://plus.google.com/105265587979403653723
https://plus.google.com/105265587979403653723
http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter

Create	your	own	Dummies	book	cover

Shop	Online

http://covers.dummies.com/
http://covers.dummies.com/
http://dummiesmerchandise.com
http://dummiesmerchandise.com

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley’s	ebook	EULA.

http://www.wiley.com/go/eula

	Title Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1: Discovering the AWS Development Environment
	Chapter 1: Starting Your AWS Adventure
	Defining the AWS Cloud
	Discovering IaaS
	Determining Why You Should Use AWS
	Considering the AWS-Supported Platforms

	Chapter 2: Obtaining Development Access to Amazon Web Services
	Discovering the Limits of Free Services
	Considering the Hardware Requirements
	Getting Signed Up
	Testing Your Setup

	Chapter 3: Choosing the Right Services
	Getting a Quick Overview of Free-Tier Services
	Matching AWS Services to Your Application
	Considering AWS Security Issues

	Part 2: Starting the Development Process
	Chapter 4: Considering AWS Communication Strategies
	Defining the Major Communication Standards
	Understanding How REST Works

	Chapter 5: Creating a Development Environment
	Choosing a Platform
	Obtaining and Installing Python
	Working with the Identity and Access Management Console
	Installing the Command Line Interface Software
	Configuring S3 Using CLI
	Configuring S3 Using Node.js
	Configuring S3 Using a Desktop Application

	Chapter 6: Creating a Virtual Server Using EC2
	Getting to Know the Elastic Compute Cloud (EC2)
	Working with Elastic Block Store (EBS) Volumes
	Discovering Images and Instances

	Part 3: Performing Basic Development Tasks
	Chapter 7: Understanding AWS Input/Output
	Considering the Input/Output Options
	Working with JSON
	Working with XML
	Working with Amazon API Gateway

	Chapter 8: Developing Web Apps Using Elastic Beanstalk
	Considering Elastic Beanstalk (EB) Features
	Deploying an EB Application
	Updating an EB Application
	Removing Unneeded Applications
	Monitoring Your Application Using Amazon CloudWatch

	Chapter 9: Developing Batch Processes and Scripts
	Considering the Batch-Processing and Script Options
	Performing Batch Processing Locally
	Developing Scripts
	Using Scripts Locally
	Interacting with aws-shell

	Chapter 10: Responding to Events with Lambda
	Considering the Lambda Features
	Starting the Lambda Console
	Creating a Basic Lambda Application
	Interacting with Simple Queue Services (SQS)

	Part 4: Interacting with Databases
	Chapter 11: Getting Basic DBMS Using RDS
	Considering the Relational Database Service (RDS) Features
	Managing RDS
	Creating a Database Server
	Adding Support to Applications
	Configuring Load Balancing and Scaling

	Chapter 12: Programming Techniques for AWS and MySQL
	Interacting with RDS
	Working with MySQL Code
	Working with the MySQL/RDS Tables
	Performing Data Uploads
	Performing Data Downloads

	Chapter 13: Gaining NoSQL Access Using DynamoDB
	Considering the DynamoDB Features
	Downloading a Local Copy of DynamoDB
	Creating a Basic DynamoDB Setup
	Developing a Basic Database
	Performing Queries

	Part 5: The Part of Tens
	Chapter 14: Ten Ways to Create AWS Applications Quickly
	Working at the Console
	Using Example Source Code
	Combining Trial-and-Error Techniques
	Watching the Videos
	Attending the Webinars
	Discovering Others Efforts
	Depending on Peer Support
	Working with Blogs
	Using Alternative Sources
	Going Back to Tutorials

	Chapter 15: Ten AWS Tools Every Developer Needs
	Obtaining Additional Amazon Offerings
	Partnering with a Third Party
	Developing New Knowledge
	Using Bitnami Developer Tools-
	Relying on Device Emulators

	About the Author
	Connect with Dummies
	End User License Agreement

